Asset module
Methods attached to the Kili client, to run actions on assets.
Source code in kili/presentation/client/asset.py
class AssetClientMethods(BaseClientMethods):
"""Methods attached to the Kili client, to run actions on assets."""
# pylint: disable=too-many-arguments, redefined-builtin, too-many-locals
@overload
def assets(
self,
project_id: str,
asset_id: Optional[str] = None,
skip: int = 0,
fields: ListOrTuple[str] = (
"content",
"createdAt",
"externalId",
"id",
"isHoneypot",
"jsonMetadata",
"labels.author.id",
"labels.author.email",
"labels.createdAt",
"labels.id",
"labels.jsonResponse",
"skipped",
"status",
),
asset_id_in: Optional[List[str]] = None,
asset_id_not_in: Optional[List[str]] = None,
consensus_mark_gt: Optional[float] = None,
consensus_mark_lt: Optional[float] = None,
disable_tqdm: Optional[bool] = None,
external_id_contains: Optional[List[str]] = None,
first: Optional[int] = None,
format: Optional[str] = None,
honeypot_mark_gt: Optional[float] = None,
honeypot_mark_lt: Optional[float] = None,
label_author_in: Optional[List[str]] = None,
label_consensus_mark_gt: Optional[float] = None,
label_consensus_mark_lt: Optional[float] = None,
label_created_at: Optional[str] = None,
label_created_at_gt: Optional[str] = None,
label_created_at_lt: Optional[str] = None,
label_honeypot_mark_gt: Optional[float] = None,
label_honeypot_mark_lt: Optional[float] = None,
label_type_in: Optional[List[LabelType]] = None,
metadata_where: Optional[dict] = None,
skipped: Optional[bool] = None,
status_in: Optional[List[AssetStatus]] = None,
updated_at_gte: Optional[str] = None,
updated_at_lte: Optional[str] = None,
label_category_search: Optional[str] = None,
download_media: bool = False,
local_media_dir: Optional[str] = None,
created_at_gte: Optional[str] = None,
created_at_lte: Optional[str] = None,
honeypot_mark_gte: Optional[float] = None,
honeypot_mark_lte: Optional[float] = None,
consensus_mark_gte: Optional[float] = None,
consensus_mark_lte: Optional[float] = None,
inference_mark_gte: Optional[float] = None,
inference_mark_lte: Optional[float] = None,
label_labeler_in: Optional[ListOrTuple[str]] = None,
label_labeler_not_in: Optional[ListOrTuple[str]] = None,
label_reviewer_in: Optional[ListOrTuple[str]] = None,
label_reviewer_not_in: Optional[ListOrTuple[str]] = None,
assignee_in: Optional[ListOrTuple[str]] = None,
assignee_not_in: Optional[ListOrTuple[str]] = None,
label_consensus_mark_gte: Optional[float] = None,
label_consensus_mark_lte: Optional[float] = None,
label_created_at_gte: Optional[str] = None,
label_created_at_lte: Optional[str] = None,
label_honeypot_mark_gte: Optional[float] = None,
label_honeypot_mark_lte: Optional[float] = None,
issue_type: Optional[IssueType] = None,
issue_status: Optional[IssueStatus] = None,
external_id_strictly_in: Optional[List[str]] = None,
external_id_in: Optional[List[str]] = None,
label_output_format: Literal["dict", "parsed_label"] = "dict",
*,
as_generator: Literal[True],
) -> Generator[Dict, None, None]:
...
@overload
def assets(
self,
project_id: str,
asset_id: Optional[str] = None,
skip: int = 0,
fields: ListOrTuple[str] = (
"content",
"createdAt",
"externalId",
"id",
"isHoneypot",
"jsonMetadata",
"labels.author.id",
"labels.author.email",
"labels.createdAt",
"labels.id",
"labels.jsonResponse",
"skipped",
"status",
),
asset_id_in: Optional[List[str]] = None,
asset_id_not_in: Optional[List[str]] = None,
consensus_mark_gt: Optional[float] = None,
consensus_mark_lt: Optional[float] = None,
disable_tqdm: Optional[bool] = None,
external_id_contains: Optional[List[str]] = None,
first: Optional[int] = None,
format: Optional[str] = None,
honeypot_mark_gt: Optional[float] = None,
honeypot_mark_lt: Optional[float] = None,
label_author_in: Optional[List[str]] = None,
label_consensus_mark_gt: Optional[float] = None,
label_consensus_mark_lt: Optional[float] = None,
label_created_at: Optional[str] = None,
label_created_at_gt: Optional[str] = None,
label_created_at_lt: Optional[str] = None,
label_honeypot_mark_gt: Optional[float] = None,
label_honeypot_mark_lt: Optional[float] = None,
label_type_in: Optional[List[LabelType]] = None,
metadata_where: Optional[dict] = None,
skipped: Optional[bool] = None,
status_in: Optional[List[AssetStatus]] = None,
updated_at_gte: Optional[str] = None,
updated_at_lte: Optional[str] = None,
label_category_search: Optional[str] = None,
download_media: bool = False,
local_media_dir: Optional[str] = None,
created_at_gte: Optional[str] = None,
created_at_lte: Optional[str] = None,
honeypot_mark_gte: Optional[float] = None,
honeypot_mark_lte: Optional[float] = None,
consensus_mark_gte: Optional[float] = None,
consensus_mark_lte: Optional[float] = None,
inference_mark_gte: Optional[float] = None,
inference_mark_lte: Optional[float] = None,
label_labeler_in: Optional[ListOrTuple[str]] = None,
label_labeler_not_in: Optional[ListOrTuple[str]] = None,
label_reviewer_in: Optional[ListOrTuple[str]] = None,
label_reviewer_not_in: Optional[ListOrTuple[str]] = None,
assignee_in: Optional[ListOrTuple[str]] = None,
assignee_not_in: Optional[ListOrTuple[str]] = None,
label_consensus_mark_gte: Optional[float] = None,
label_consensus_mark_lte: Optional[float] = None,
label_created_at_gte: Optional[str] = None,
label_created_at_lte: Optional[str] = None,
label_honeypot_mark_gte: Optional[float] = None,
label_honeypot_mark_lte: Optional[float] = None,
issue_type: Optional[Literal["QUESTION", "ISSUE"]] = None,
issue_status: Optional[Literal["OPEN", "SOLVED"]] = None,
external_id_strictly_in: Optional[List[str]] = None,
external_id_in: Optional[List[str]] = None,
label_output_format: Literal["dict", "parsed_label"] = "dict",
*,
as_generator: Literal[False] = False,
) -> List[Dict]:
...
@typechecked
def assets(
self,
project_id: str,
asset_id: Optional[str] = None,
skip: int = 0,
fields: ListOrTuple[str] = (
"content",
"createdAt",
"externalId",
"id",
"isHoneypot",
"jsonMetadata",
"labels.author.id",
"labels.author.email",
"labels.createdAt",
"labels.id",
"labels.jsonResponse",
"skipped",
"status",
),
asset_id_in: Optional[List[str]] = None,
asset_id_not_in: Optional[List[str]] = None,
consensus_mark_gt: Optional[float] = None,
consensus_mark_lt: Optional[float] = None,
disable_tqdm: Optional[bool] = None,
external_id_contains: Optional[List[str]] = None,
first: Optional[int] = None,
format: Optional[str] = None,
honeypot_mark_gt: Optional[float] = None,
honeypot_mark_lt: Optional[float] = None,
label_author_in: Optional[List[str]] = None,
label_consensus_mark_gt: Optional[float] = None,
label_consensus_mark_lt: Optional[float] = None,
label_created_at: Optional[str] = None,
label_created_at_gt: Optional[str] = None,
label_created_at_lt: Optional[str] = None,
label_honeypot_mark_gt: Optional[float] = None,
label_honeypot_mark_lt: Optional[float] = None,
label_type_in: Optional[List[LabelType]] = None,
metadata_where: Optional[dict] = None,
skipped: Optional[bool] = None,
status_in: Optional[List[AssetStatus]] = None,
updated_at_gte: Optional[str] = None,
updated_at_lte: Optional[str] = None,
label_category_search: Optional[str] = None,
download_media: bool = False,
local_media_dir: Optional[str] = None,
created_at_gte: Optional[str] = None,
created_at_lte: Optional[str] = None,
honeypot_mark_gte: Optional[float] = None,
honeypot_mark_lte: Optional[float] = None,
consensus_mark_gte: Optional[float] = None,
consensus_mark_lte: Optional[float] = None,
inference_mark_gte: Optional[float] = None,
inference_mark_lte: Optional[float] = None,
label_labeler_in: Optional[ListOrTuple[str]] = None,
label_labeler_not_in: Optional[ListOrTuple[str]] = None,
label_reviewer_in: Optional[ListOrTuple[str]] = None,
label_reviewer_not_in: Optional[ListOrTuple[str]] = None,
assignee_in: Optional[ListOrTuple[str]] = None,
assignee_not_in: Optional[ListOrTuple[str]] = None,
label_consensus_mark_gte: Optional[float] = None,
label_consensus_mark_lte: Optional[float] = None,
label_created_at_gte: Optional[str] = None,
label_created_at_lte: Optional[str] = None,
label_honeypot_mark_gte: Optional[float] = None,
label_honeypot_mark_lte: Optional[float] = None,
issue_type: Optional[Literal["QUESTION", "ISSUE"]] = None,
issue_status: Optional[Literal["OPEN", "SOLVED"]] = None,
external_id_strictly_in: Optional[List[str]] = None,
external_id_in: Optional[List[str]] = None,
label_output_format: Literal["dict", "parsed_label"] = "dict",
*,
as_generator: bool = False,
) -> Union[Iterable[Dict], "pd.DataFrame"]:
# pylint: disable=line-too-long
"""Get an asset list, an asset generator or a pandas DataFrame that match a set of constraints.
Args:
project_id: Identifier of the project.
asset_id: Identifier of the asset to retrieve.
asset_id_in: A list of the IDs of the assets to retrieve.
asset_id_not_in: A list of the IDs of the assets to exclude.
skip: Number of assets to skip (they are ordered by their date of creation, first to last).
fields: All the fields to request among the possible fields for the assets.
See [the documentation](https://docs.kili-technology.com/reference/graphql-api#asset) for all possible fields.
first: Maximum number of assets to return.
consensus_mark_gt: Deprecated. Use `consensus_mark_gte` instead.
consensus_mark_lt: Deprecated. Use `consensus_mark_lte` instead.
external_id_contains: Deprecated. Use `external_id_strictly_in` instead.
metadata_where: Filters by the values of the metadata of the asset.
honeypot_mark_gt: Deprecated. Use `honeypot_mark_gte` instead.
honeypot_mark_lt: Deprecated. Use `honeypot_mark_lte` instead.
status_in: Returned assets should have a status that belongs to that list, if given.
Possible choices: `TODO`, `ONGOING`, `LABELED`, `TO_REVIEW` or `REVIEWED`.
label_type_in: Returned assets should have a label whose type belongs to that list, if given.
label_author_in: Returned assets should have a label whose author belongs to that list, if given. An author can be designated by the first name, the last name, or the first name + last name.
label_consensus_mark_gt: Deprecated. Use `label_consensus_mark_gte` instead.
label_consensus_mark_lt: Deprecated. Use `label_consensus_mark_lte` instead.
label_created_at: Returned assets should have a label whose creation date is equal to this date.
label_created_at_gt: Deprecated. Use `label_created_at_gte` instead.
label_created_at_lt: Deprecated. Use `label_created_at_lte` instead.
label_honeypot_mark_gt: Deprecated. Use `label_honeypot_mark_gte` instead.
label_honeypot_mark_lt: Deprecated. Use `label_honeypot_mark_lte` instead.
skipped: Returned assets should be skipped
updated_at_gte: Returned assets should have a label whose update date is greater or equal to this date.
updated_at_lte: Returned assets should have a label whose update date is lower or equal to this date.
format: If equal to 'pandas', returns a pandas DataFrame
disable_tqdm: If `True`, the progress bar will be disabled
as_generator: If `True`, a generator on the assets is returned.
label_category_search: Returned assets should have a label that follows this category search query.
download_media: Tell is the media have to be downloaded or not.
local_media_dir: Directory where the media are downloaded if `download_media` is True.
created_at_gte: Returned assets should have their import date greater or equal to this date.
created_at_lte: Returned assets should have their import date lower or equal to this date.
honeypot_mark_lte: Maximum amount of honeypot for the asset.
honeypot_mark_gte: Minimum amount of honeypot for the asset.
consensus_mark_lte: Maximum amount of consensus for the asset.
consensus_mark_gte: Minimum amount of consensus for the asset.
inference_mark_gte: Minimum amount of human/model IoU for the asset.
inference_mark_lte: Maximum amount of human/model IoU for the asset.
label_labeler_in: Returned assets should have a label whose labeler belongs to that list, if given.
label_labeler_not_in: Returned assets should have a label whose labeler does not belong to that list, if given.
label_reviewer_in: Returned assets should have a label whose reviewer belongs to that list, if given.
label_reviewer_not_in: Returned assets should have a label whose reviewer does not belong to that list, if given.
assignee_in: Returned assets should have an assigned user that belongs to that list, if given.
assignee_not_in: Returned assets should have an assigned user that does not belong to that list, if given.
label_consensus_mark_gte: Returned assets should have a label whose consensus is greater or equal to this number.
label_consensus_mark_lte: Returned assets should have a label whose consensus is lower or equal to this number.
label_created_at_lte: Returned assets should have a label whose creation date is lower or equal to this date.
label_created_at_gte: Returned assets should have a label whose creation date is greater or equal to this date.
label_honeypot_mark_gte: Returned assets should have a label whose honeypot is greater or equal to this number.
label_honeypot_mark_lte: Returned assets should have a label whose honeypot is lower or equal to this number.
issue_type: Returned assets should have issues of type `QUESTION` or `ISSUE`.
issue_status: Returned assets should have issues of status `OPEN` or `SOLVED`.
external_id_strictly_in: Returned assets should have external ids that match exactly the ones in the list.
external_id_in: Returned assets should have external ids that partially match the ones in the list.
For example, with `external_id_in=['abc']`, any asset with an external id containing `'abc'` will be returned.
label_output_format: If `parsed_label`, the labels in the assets will be parsed. More information on parsed labels in the [documentation](https://python-sdk-docs.kili-technology.com/latest/sdk/tutorials/label_parsing/).
!!! info "Dates format"
Date strings should have format: "YYYY-MM-DD"
!!! info "Filtering by label properties"
When the assets are filtered by label properties using any of `label_*` filter arguments, as soon as **one**
label matches **all** the label property criteria, the asset is kept and returned by the method. If any of the
`labels.*` or `latestLabel.*` subfields are queried, **all** the labels of the kept assets are returned together
with the assets (and not only the ones matching the criteria)
Returns:
An asset list, an asset generator or a pandas DataFrame that match a set of constraints.
Example:
```
# returns the assets list of the project
>>> kili.assets(project_id)
>>> kili.assets(project_id, asset_id=asset_id)
# returns a generator of the project assets
>>> kili.assets(project_id, as_generator=True)
```
!!! example "How to filter based on Metadata"
- `metadata_where = {key1: "value1"}` to filter on assets whose metadata
have key "key1" with value "value1"
- `metadata_where = {key1: ["value1", "value2"]}` to filter on assets whose metadata
have key "key1" with value "value1" or value "value2
- `metadata_where = {key2: [2, 10]}` to filter on assets whose metadata
have key "key2" with a value between 2 and 10.
!!! example "How to filter based on label categories"
The search query is composed of logical expressions following this format:
[job_name].[category_name].count [comparaison_operator] [value]
where:
- `[job_name]` is the name of the job in the interface
- `[category_name]` is the name of the category in the interface for this job
- `[comparaison_operator]` can be one of: [`==`, `>=`, `<=`, `<`, `>`]
- `[value]` is an integer that represents the count of such objects of the given category in the label
These operations can be separated by OR and AND operators:
```python
label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0`
label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0 OR JOB_NER.CATEGORY_B.count > 0`
label_category_search = `(JOB_CLASSIF.CATEGORY_A.count == 1 OR JOB_NER.CATEGORY_B.count > 0) AND JOB_BBOX.CATEGORY_C.count > 10`
```
"""
if format == "pandas" and as_generator:
raise ValueError(
'Argument values as_generator==True and format=="pandas" are not compatible.'
)
if external_id_contains is not None:
warnings.warn(
"external_id_contains is deprecated, use external_id_strictly_in instead",
DeprecationWarning,
stacklevel=1,
)
for arg_name, arg_value in zip(
(
"consensus_mark_gt",
"consensus_mark_lt",
"honeypot_mark_gt",
"honeypot_mark_lt",
"label_consensus_mark_gt",
"label_consensus_mark_lt",
"label_created_at_gt",
"label_created_at_lt",
"label_honeypot_mark_gt",
"label_honeypot_mark_lt",
),
(
consensus_mark_gt,
consensus_mark_lt,
honeypot_mark_gt,
honeypot_mark_lt,
label_consensus_mark_gt,
label_consensus_mark_lt,
label_created_at_gt,
label_created_at_lt,
label_honeypot_mark_gt,
label_honeypot_mark_lt,
),
):
if arg_value:
warnings.warn(
f"'{arg_name}' is deprecated, please use"
f" '{arg_name.replace('_gt', '_gte').replace('_lt', '_lte')}' instead.",
DeprecationWarning,
stacklevel=1,
)
disable_tqdm = disable_tqdm_if_as_generator(as_generator, disable_tqdm)
asset_use_cases = AssetUseCases(self.kili_api_gateway)
filters = AssetFilters(
project_id=ProjectId(project_id),
asset_id=AssetId(asset_id) if asset_id else None,
asset_id_in=cast(List[AssetId], asset_id_in) if asset_id_in else None,
asset_id_not_in=cast(List[AssetId], asset_id_not_in) if asset_id_not_in else None,
consensus_mark_gte=consensus_mark_gt or consensus_mark_gte,
consensus_mark_lte=consensus_mark_lt or consensus_mark_lte,
external_id_strictly_in=(
cast(List[AssetExternalId], external_id_strictly_in or external_id_contains)
if external_id_strictly_in or external_id_contains
else None
),
external_id_in=cast(List[AssetExternalId], external_id_in) if external_id_in else None,
honeypot_mark_gte=honeypot_mark_gt or honeypot_mark_gte,
honeypot_mark_lte=honeypot_mark_lt or honeypot_mark_lte,
inference_mark_gte=inference_mark_gte,
inference_mark_lte=inference_mark_lte,
label_author_in=label_author_in,
label_consensus_mark_gte=label_consensus_mark_gt or label_consensus_mark_gte,
label_consensus_mark_lte=label_consensus_mark_lt or label_consensus_mark_lte,
label_created_at=label_created_at,
label_created_at_gte=label_created_at_gt or label_created_at_gte,
label_created_at_lte=label_created_at_lt or label_created_at_lte,
label_honeypot_mark_gte=label_honeypot_mark_gt or label_honeypot_mark_gte,
label_honeypot_mark_lte=label_honeypot_mark_lt or label_honeypot_mark_lte,
label_type_in=label_type_in,
metadata_where=metadata_where,
skipped=skipped,
status_in=status_in,
updated_at_gte=updated_at_gte,
updated_at_lte=updated_at_lte,
label_category_search=label_category_search,
created_at_gte=created_at_gte,
created_at_lte=created_at_lte,
label_labeler_in=label_labeler_in,
label_labeler_not_in=label_labeler_not_in,
label_reviewer_in=label_reviewer_in,
label_reviewer_not_in=label_reviewer_not_in,
assignee_in=assignee_in,
assignee_not_in=assignee_not_in,
issue_status=issue_status,
issue_type=issue_type,
)
assets_gen = asset_use_cases.list_assets(
filters,
fields,
download_media=download_media,
local_media_dir=local_media_dir,
label_output_format=label_output_format,
options=QueryOptions(disable_tqdm=disable_tqdm, first=first, skip=skip),
)
if format == "pandas":
import pandas as pd # pylint: disable=import-outside-toplevel
return pd.DataFrame(list(assets_gen))
if as_generator:
return assets_gen
return list(assets_gen)
# pylint: disable=too-many-arguments,too-many-locals
@typechecked
def count_assets(
self,
project_id: str,
asset_id: Optional[str] = None,
asset_id_in: Optional[List[str]] = None,
asset_id_not_in: Optional[List[str]] = None,
external_id_contains: Optional[List[str]] = None,
metadata_where: Optional[dict] = None,
status_in: Optional[List[AssetStatus]] = None,
consensus_mark_gt: Optional[float] = None,
consensus_mark_lt: Optional[float] = None,
honeypot_mark_gt: Optional[float] = None,
honeypot_mark_lt: Optional[float] = None,
label_type_in: Optional[List[LabelType]] = None,
label_author_in: Optional[List[str]] = None,
label_consensus_mark_gt: Optional[float] = None,
label_consensus_mark_lt: Optional[float] = None,
label_created_at: Optional[str] = None,
label_created_at_gt: Optional[str] = None,
label_created_at_lt: Optional[str] = None,
label_honeypot_mark_gt: Optional[float] = None,
label_honeypot_mark_lt: Optional[float] = None,
skipped: Optional[bool] = None,
updated_at_gte: Optional[str] = None,
updated_at_lte: Optional[str] = None,
label_category_search: Optional[str] = None,
created_at_gte: Optional[str] = None,
created_at_lte: Optional[str] = None,
honeypot_mark_gte: Optional[float] = None,
honeypot_mark_lte: Optional[float] = None,
consensus_mark_gte: Optional[float] = None,
consensus_mark_lte: Optional[float] = None,
inference_mark_gte: Optional[float] = None,
inference_mark_lte: Optional[float] = None,
label_labeler_in: Optional[ListOrTuple[str]] = None,
label_labeler_not_in: Optional[ListOrTuple[str]] = None,
label_reviewer_in: Optional[ListOrTuple[str]] = None,
label_reviewer_not_in: Optional[ListOrTuple[str]] = None,
assignee_in: Optional[ListOrTuple[str]] = None,
assignee_not_in: Optional[ListOrTuple[str]] = None,
label_consensus_mark_gte: Optional[float] = None,
label_consensus_mark_lte: Optional[float] = None,
label_created_at_gte: Optional[str] = None,
label_created_at_lte: Optional[str] = None,
label_honeypot_mark_gte: Optional[float] = None,
label_honeypot_mark_lte: Optional[float] = None,
issue_type: Optional[IssueType] = None,
issue_status: Optional[IssueStatus] = None,
external_id_strictly_in: Optional[List[str]] = None,
external_id_in: Optional[List[str]] = None,
) -> int:
# pylint: disable=line-too-long
"""Count and return the number of assets with the given constraints.
Parameters beginning with 'label_' apply to labels, others apply to assets.
Args:
project_id: Identifier of the project
asset_id: The unique id of the asset to retrieve.
asset_id_in: A list of the ids of the assets to retrieve.
asset_id_not_in: A list of the ids of the assets to exclude.
external_id_contains: Deprecated. Use `external_id_strictly_in` instead.
metadata_where: Filters by the values of the metadata of the asset.
status_in: Returned assets should have a status that belongs to that list, if given. Possible choices: `TODO`, `ONGOING`, `LABELED`, `TO_REVIEW` or `REVIEWED`.
consensus_mark_gt: Deprecated. Use `consensus_mark_gte` instead.
consensus_mark_lt: Deprecated. Use `consensus_mark_lte` instead.
honeypot_mark_gt: Deprecated. Use `honeypot_mark_gte` instead.
honeypot_mark_lt: Deprecated. Use `honeypot_mark_lte` instead.
label_type_in: Returned assets should have a label whose type belongs to that list, if given.
label_author_in: Returned assets should have a label whose author belongs to that list, if given. An author can be designated by the first name, the last name, or the first name + last name.
label_consensus_mark_gt: Deprecated. Use `label_consensus_mark_gte` instead.
label_consensus_mark_lt: Deprecated. Use `label_consensus_mark_lte` instead.
label_created_at: Returned assets should have a label whose creation date is equal to this date.
label_created_at_gt: Deprecated. Use `label_created_at_gte` instead.
label_created_at_lt: Deprecated. Use `label_created_at_lte` instead.
label_honeypot_mark_gt: Deprecated. Use `label_honeypot_mark_gte` instead.
label_honeypot_mark_lt: Deprecated. Use `label_honeypot_mark_lte` instead.
skipped: Returned assets should be skipped.
updated_at_gte: Returned assets should have a label whose update date is greated or equal to this date.
updated_at_lte: Returned assets should have a label whose update date is lower or equal to this date.
label_category_search: Returned assets should have a label that follows this category search query.
created_at_gte: Returned assets should have their import date greater or equal to this date.
created_at_lte: Returned assets should have their import date lower or equal to this date.
honeypot_mark_lte: Maximum amount of honeypot for the asset.
honeypot_mark_gte: Minimum amount of honeypot for the asset.
consensus_mark_lte: Maximum amount of consensus for the asset.
consensus_mark_gte: Minimum amount of consensus for the asset.
inference_mark_gte: Minimum amount of human/model IoU for the asset.
inference_mark_lte: Maximum amount of human/model IoU for the asset.
label_labeler_in: Returned assets should have a label whose labeler belongs to that list, if given.
label_labeler_not_in: Returned assets should have a label whose labeler does not belong to that list, if given.
label_reviewer_in: Returned assets should have a label whose reviewer belongs to that list, if given.
label_reviewer_not_in: Returned assets should have a label whose reviewer does not belong to that list, if given.
assignee_in: Returned assets should have an assigned user that belongs to that list, if given.
assignee_not_in: Returned assets should have an assigned user that does not belong to that list, if given.
label_consensus_mark_gte: Returned assets should have a label whose consensus is greater or equal to this number.
label_consensus_mark_lte: Returned assets should have a label whose consensus is lower or equal to this number.
label_created_at_lte: Returned assets should have a label whose creation date is lower or equal to this date.
label_created_at_gte: Returned assets should have a label whose creation date is greater or equal to this date.
label_honeypot_mark_gte: Returned assets should have a label whose honeypot is greater or equal to this number.
label_honeypot_mark_lte: Returned assets should have a label whose honeypot is lower or equal to this number.
issue_type: Returned assets should have issues of type `QUESTION` or `ISSUE`.
issue_status: Returned assets should have issues of status `OPEN` or `SOLVED`.
external_id_strictly_in: Returned assets should have external ids that match exactly the ones in the list.
external_id_in: Returned assets should have external ids that partially match the ones in the list.
For example, with `external_id_in=['abc']`, any asset with an external id containing `'abc'` will be returned.
!!! info "Dates format"
Date strings should have format: "YYYY-MM-DD"
Returns:
The number of assets that match the given constraints.
Examples:
>>> kili.count_assets(project_id=project_id)
250
>>> kili.count_assets(asset_id=asset_id)
1
!!! example "How to filter based on Metadata"
- `metadata_where = {key1: "value1"}` to filter on assets whose metadata
have key "key1" with value "value1"
- `metadata_where = {key1: ["value1", "value2"]}` to filter on assets whose metadata
have key "key1" with value "value1" or value "value2
- `metadata_where = {key2: [2, 10]}` to filter on assets whose metadata
have key "key2" with a value between 2 and 10.
"""
if external_id_contains is not None:
warnings.warn(
"external_id_contains is deprecated, use external_id_strictly_in instead",
DeprecationWarning,
stacklevel=1,
)
for arg_name, arg_value in zip(
(
"consensus_mark_gt",
"consensus_mark_lt",
"honeypot_mark_gt",
"honeypot_mark_lt",
"label_consensus_mark_gt",
"label_consensus_mark_lt",
"label_created_at_gt",
"label_created_at_lt",
"label_honeypot_mark_gt",
"label_honeypot_mark_lt",
),
(
consensus_mark_gt,
consensus_mark_lt,
honeypot_mark_gt,
honeypot_mark_lt,
label_consensus_mark_gt,
label_consensus_mark_lt,
label_created_at_gt,
label_created_at_lt,
label_honeypot_mark_gt,
label_honeypot_mark_lt,
),
):
if arg_value:
warnings.warn(
f"'{arg_name}' is deprecated, please use"
f" '{arg_name.replace('_gt', '_gte').replace('_lt', '_lte')}' instead.",
DeprecationWarning,
stacklevel=1,
)
filters = AssetFilters(
project_id=ProjectId(project_id),
asset_id=AssetId(asset_id) if asset_id else None,
asset_id_in=cast(List[AssetId], asset_id_in) if asset_id_in else None,
asset_id_not_in=cast(List[AssetId], asset_id_not_in) if asset_id_not_in else None,
consensus_mark_gte=consensus_mark_gt or consensus_mark_gte,
consensus_mark_lte=consensus_mark_lt or consensus_mark_lte,
external_id_strictly_in=(
cast(List[AssetExternalId], external_id_strictly_in or external_id_contains)
if external_id_strictly_in or external_id_contains
else None
),
external_id_in=cast(List[AssetExternalId], external_id_in) if external_id_in else None,
honeypot_mark_gte=honeypot_mark_gt or honeypot_mark_gte,
honeypot_mark_lte=honeypot_mark_lt or honeypot_mark_lte,
inference_mark_gte=inference_mark_gte,
inference_mark_lte=inference_mark_lte,
label_author_in=label_author_in,
label_labeler_in=label_labeler_in,
label_labeler_not_in=label_labeler_not_in,
label_reviewer_in=label_reviewer_in,
label_reviewer_not_in=label_reviewer_not_in,
assignee_in=assignee_in,
assignee_not_in=assignee_not_in,
label_consensus_mark_gte=label_consensus_mark_gt or label_consensus_mark_gte,
label_consensus_mark_lte=label_consensus_mark_lt or label_consensus_mark_lte,
label_created_at=label_created_at,
label_created_at_gte=label_created_at_gt or label_created_at_gte,
label_created_at_lte=label_created_at_lt or label_created_at_lte,
label_honeypot_mark_gte=label_honeypot_mark_gt or label_honeypot_mark_gte,
label_honeypot_mark_lte=label_honeypot_mark_lt or label_honeypot_mark_lte,
label_type_in=label_type_in,
metadata_where=metadata_where,
skipped=skipped,
status_in=status_in,
updated_at_gte=updated_at_gte,
updated_at_lte=updated_at_lte,
label_category_search=label_category_search,
created_at_gte=created_at_gte,
created_at_lte=created_at_lte,
issue_status=issue_status,
issue_type=issue_type,
)
asset_use_cases = AssetUseCases(self.kili_api_gateway)
return asset_use_cases.count_assets(filters)
assets(self, project_id, asset_id=None, skip=0, fields=('content', 'createdAt', 'externalId', 'id', 'isHoneypot', 'jsonMetadata', 'labels.author.id', 'labels.author.email', 'labels.createdAt', 'labels.id', 'labels.jsonResponse', 'skipped', 'status'), asset_id_in=None, asset_id_not_in=None, consensus_mark_gt=None, consensus_mark_lt=None, disable_tqdm=None, external_id_contains=None, first=None, format=None, honeypot_mark_gt=None, honeypot_mark_lt=None, label_author_in=None, label_consensus_mark_gt=None, label_consensus_mark_lt=None, label_created_at=None, label_created_at_gt=None, label_created_at_lt=None, label_honeypot_mark_gt=None, label_honeypot_mark_lt=None, label_type_in=None, metadata_where=None, skipped=None, status_in=None, updated_at_gte=None, updated_at_lte=None, label_category_search=None, download_media=False, local_media_dir=None, created_at_gte=None, created_at_lte=None, honeypot_mark_gte=None, honeypot_mark_lte=None, consensus_mark_gte=None, consensus_mark_lte=None, inference_mark_gte=None, inference_mark_lte=None, label_labeler_in=None, label_labeler_not_in=None, label_reviewer_in=None, label_reviewer_not_in=None, assignee_in=None, assignee_not_in=None, label_consensus_mark_gte=None, label_consensus_mark_lte=None, label_created_at_gte=None, label_created_at_lte=None, label_honeypot_mark_gte=None, label_honeypot_mark_lte=None, issue_type=None, issue_status=None, external_id_strictly_in=None, external_id_in=None, label_output_format='dict', *, as_generator=False)
Get an asset list, an asset generator or a pandas DataFrame that match a set of constraints.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
project_id |
str |
Identifier of the project. |
required |
asset_id |
Optional[str] |
Identifier of the asset to retrieve. |
None |
asset_id_in |
Optional[List[str]] |
A list of the IDs of the assets to retrieve. |
None |
asset_id_not_in |
Optional[List[str]] |
A list of the IDs of the assets to exclude. |
None |
skip |
int |
Number of assets to skip (they are ordered by their date of creation, first to last). |
0 |
fields |
Union[List[str], Tuple[str, ...]] |
All the fields to request among the possible fields for the assets. See the documentation for all possible fields. |
('content', 'createdAt', 'externalId', 'id', 'isHoneypot', 'jsonMetadata', 'labels.author.id', 'labels.author.email', 'labels.createdAt', 'labels.id', 'labels.jsonResponse', 'skipped', 'status') |
first |
Optional[int] |
Maximum number of assets to return. |
None |
consensus_mark_gt |
Optional[float] |
Deprecated. Use |
None |
consensus_mark_lt |
Optional[float] |
Deprecated. Use |
None |
external_id_contains |
Optional[List[str]] |
Deprecated. Use |
None |
metadata_where |
Optional[dict] |
Filters by the values of the metadata of the asset. |
None |
honeypot_mark_gt |
Optional[float] |
Deprecated. Use |
None |
honeypot_mark_lt |
Optional[float] |
Deprecated. Use |
None |
status_in |
Optional[List[Literal['TODO', 'ONGOING', 'LABELED', 'REVIEWED', 'TO_REVIEW']]] |
Returned assets should have a status that belongs to that list, if given.
Possible choices: |
None |
label_type_in |
Optional[List[Literal['AUTOSAVE', 'DEFAULT', 'INFERENCE', 'PREDICTION', 'REVIEW']]] |
Returned assets should have a label whose type belongs to that list, if given. |
None |
label_author_in |
Optional[List[str]] |
Returned assets should have a label whose author belongs to that list, if given. An author can be designated by the first name, the last name, or the first name + last name. |
None |
label_consensus_mark_gt |
Optional[float] |
Deprecated. Use |
None |
label_consensus_mark_lt |
Optional[float] |
Deprecated. Use |
None |
label_created_at |
Optional[str] |
Returned assets should have a label whose creation date is equal to this date. |
None |
label_created_at_gt |
Optional[str] |
Deprecated. Use |
None |
label_created_at_lt |
Optional[str] |
Deprecated. Use |
None |
label_honeypot_mark_gt |
Optional[float] |
Deprecated. Use |
None |
label_honeypot_mark_lt |
Optional[float] |
Deprecated. Use |
None |
skipped |
Optional[bool] |
Returned assets should be skipped |
None |
updated_at_gte |
Optional[str] |
Returned assets should have a label whose update date is greater or equal to this date. |
None |
updated_at_lte |
Optional[str] |
Returned assets should have a label whose update date is lower or equal to this date. |
None |
format |
Optional[str] |
If equal to 'pandas', returns a pandas DataFrame |
None |
disable_tqdm |
Optional[bool] |
If |
None |
as_generator |
bool |
If |
False |
label_category_search |
Optional[str] |
Returned assets should have a label that follows this category search query. |
None |
download_media |
bool |
Tell is the media have to be downloaded or not. |
False |
local_media_dir |
Optional[str] |
Directory where the media are downloaded if |
None |
created_at_gte |
Optional[str] |
Returned assets should have their import date greater or equal to this date. |
None |
created_at_lte |
Optional[str] |
Returned assets should have their import date lower or equal to this date. |
None |
honeypot_mark_lte |
Optional[float] |
Maximum amount of honeypot for the asset. |
None |
honeypot_mark_gte |
Optional[float] |
Minimum amount of honeypot for the asset. |
None |
consensus_mark_lte |
Optional[float] |
Maximum amount of consensus for the asset. |
None |
consensus_mark_gte |
Optional[float] |
Minimum amount of consensus for the asset. |
None |
inference_mark_gte |
Optional[float] |
Minimum amount of human/model IoU for the asset. |
None |
inference_mark_lte |
Optional[float] |
Maximum amount of human/model IoU for the asset. |
None |
label_labeler_in |
Union[List[str], Tuple[str, ...]] |
Returned assets should have a label whose labeler belongs to that list, if given. |
None |
label_labeler_not_in |
Union[List[str], Tuple[str, ...]] |
Returned assets should have a label whose labeler does not belong to that list, if given. |
None |
label_reviewer_in |
Union[List[str], Tuple[str, ...]] |
Returned assets should have a label whose reviewer belongs to that list, if given. |
None |
label_reviewer_not_in |
Union[List[str], Tuple[str, ...]] |
Returned assets should have a label whose reviewer does not belong to that list, if given. |
None |
assignee_in |
Union[List[str], Tuple[str, ...]] |
Returned assets should have an assigned user that belongs to that list, if given. |
None |
assignee_not_in |
Union[List[str], Tuple[str, ...]] |
Returned assets should have an assigned user that does not belong to that list, if given. |
None |
label_consensus_mark_gte |
Optional[float] |
Returned assets should have a label whose consensus is greater or equal to this number. |
None |
label_consensus_mark_lte |
Optional[float] |
Returned assets should have a label whose consensus is lower or equal to this number. |
None |
label_created_at_lte |
Optional[str] |
Returned assets should have a label whose creation date is lower or equal to this date. |
None |
label_created_at_gte |
Optional[str] |
Returned assets should have a label whose creation date is greater or equal to this date. |
None |
label_honeypot_mark_gte |
Optional[float] |
Returned assets should have a label whose honeypot is greater or equal to this number. |
None |
label_honeypot_mark_lte |
Optional[float] |
Returned assets should have a label whose honeypot is lower or equal to this number. |
None |
issue_type |
Optional[Literal['QUESTION', 'ISSUE']] |
Returned assets should have issues of type |
None |
issue_status |
Optional[Literal['OPEN', 'SOLVED']] |
Returned assets should have issues of status |
None |
external_id_strictly_in |
Optional[List[str]] |
Returned assets should have external ids that match exactly the ones in the list. |
None |
external_id_in |
Optional[List[str]] |
Returned assets should have external ids that partially match the ones in the list.
For example, with |
None |
label_output_format |
Literal['dict', 'parsed_label'] |
If |
'dict' |
Dates format
Date strings should have format: "YYYY-MM-DD"
Filtering by label properties
When the assets are filtered by label properties using any of label_*
filter arguments, as soon as one
label matches all the label property criteria, the asset is kept and returned by the method. If any of the
labels.*
or latestLabel.*
subfields are queried, all the labels of the kept assets are returned together
with the assets (and not only the ones matching the criteria)
Returns:
Type | Description |
---|---|
Union[Iterable[Dict], pd.DataFrame] |
An asset list, an asset generator or a pandas DataFrame that match a set of constraints. |
Examples:
# returns the assets list of the project
>>> kili.assets(project_id)
>>> kili.assets(project_id, asset_id=asset_id)
# returns a generator of the project assets
>>> kili.assets(project_id, as_generator=True)
How to filter based on Metadata
metadata_where = {key1: "value1"}
to filter on assets whose metadata have key "key1" with value "value1"metadata_where = {key1: ["value1", "value2"]}
to filter on assets whose metadata have key "key1" with value "value1" or value "value2metadata_where = {key2: [2, 10]}
to filter on assets whose metadata have key "key2" with a value between 2 and 10.
How to filter based on label categories
The search query is composed of logical expressions following this format:
[job_name].[category_name].count [comparaison_operator] [value]
where:
[job_name]
is the name of the job in the interface[category_name]
is the name of the category in the interface for this job[comparaison_operator]
can be one of: [==
,>=
,<=
,<
,>
][value]
is an integer that represents the count of such objects of the given category in the label
These operations can be separated by OR and AND operators:
label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0`
label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0 OR JOB_NER.CATEGORY_B.count > 0`
label_category_search = `(JOB_CLASSIF.CATEGORY_A.count == 1 OR JOB_NER.CATEGORY_B.count > 0) AND JOB_BBOX.CATEGORY_C.count > 10`
Source code in kili/presentation/client/asset.py
def assets(
self,
project_id: str,
asset_id: Optional[str] = None,
skip: int = 0,
fields: ListOrTuple[str] = (
"content",
"createdAt",
"externalId",
"id",
"isHoneypot",
"jsonMetadata",
"labels.author.id",
"labels.author.email",
"labels.createdAt",
"labels.id",
"labels.jsonResponse",
"skipped",
"status",
),
asset_id_in: Optional[List[str]] = None,
asset_id_not_in: Optional[List[str]] = None,
consensus_mark_gt: Optional[float] = None,
consensus_mark_lt: Optional[float] = None,
disable_tqdm: Optional[bool] = None,
external_id_contains: Optional[List[str]] = None,
first: Optional[int] = None,
format: Optional[str] = None,
honeypot_mark_gt: Optional[float] = None,
honeypot_mark_lt: Optional[float] = None,
label_author_in: Optional[List[str]] = None,
label_consensus_mark_gt: Optional[float] = None,
label_consensus_mark_lt: Optional[float] = None,
label_created_at: Optional[str] = None,
label_created_at_gt: Optional[str] = None,
label_created_at_lt: Optional[str] = None,
label_honeypot_mark_gt: Optional[float] = None,
label_honeypot_mark_lt: Optional[float] = None,
label_type_in: Optional[List[LabelType]] = None,
metadata_where: Optional[dict] = None,
skipped: Optional[bool] = None,
status_in: Optional[List[AssetStatus]] = None,
updated_at_gte: Optional[str] = None,
updated_at_lte: Optional[str] = None,
label_category_search: Optional[str] = None,
download_media: bool = False,
local_media_dir: Optional[str] = None,
created_at_gte: Optional[str] = None,
created_at_lte: Optional[str] = None,
honeypot_mark_gte: Optional[float] = None,
honeypot_mark_lte: Optional[float] = None,
consensus_mark_gte: Optional[float] = None,
consensus_mark_lte: Optional[float] = None,
inference_mark_gte: Optional[float] = None,
inference_mark_lte: Optional[float] = None,
label_labeler_in: Optional[ListOrTuple[str]] = None,
label_labeler_not_in: Optional[ListOrTuple[str]] = None,
label_reviewer_in: Optional[ListOrTuple[str]] = None,
label_reviewer_not_in: Optional[ListOrTuple[str]] = None,
assignee_in: Optional[ListOrTuple[str]] = None,
assignee_not_in: Optional[ListOrTuple[str]] = None,
label_consensus_mark_gte: Optional[float] = None,
label_consensus_mark_lte: Optional[float] = None,
label_created_at_gte: Optional[str] = None,
label_created_at_lte: Optional[str] = None,
label_honeypot_mark_gte: Optional[float] = None,
label_honeypot_mark_lte: Optional[float] = None,
issue_type: Optional[Literal["QUESTION", "ISSUE"]] = None,
issue_status: Optional[Literal["OPEN", "SOLVED"]] = None,
external_id_strictly_in: Optional[List[str]] = None,
external_id_in: Optional[List[str]] = None,
label_output_format: Literal["dict", "parsed_label"] = "dict",
*,
as_generator: bool = False,
) -> Union[Iterable[Dict], "pd.DataFrame"]:
# pylint: disable=line-too-long
"""Get an asset list, an asset generator or a pandas DataFrame that match a set of constraints.
Args:
project_id: Identifier of the project.
asset_id: Identifier of the asset to retrieve.
asset_id_in: A list of the IDs of the assets to retrieve.
asset_id_not_in: A list of the IDs of the assets to exclude.
skip: Number of assets to skip (they are ordered by their date of creation, first to last).
fields: All the fields to request among the possible fields for the assets.
See [the documentation](https://docs.kili-technology.com/reference/graphql-api#asset) for all possible fields.
first: Maximum number of assets to return.
consensus_mark_gt: Deprecated. Use `consensus_mark_gte` instead.
consensus_mark_lt: Deprecated. Use `consensus_mark_lte` instead.
external_id_contains: Deprecated. Use `external_id_strictly_in` instead.
metadata_where: Filters by the values of the metadata of the asset.
honeypot_mark_gt: Deprecated. Use `honeypot_mark_gte` instead.
honeypot_mark_lt: Deprecated. Use `honeypot_mark_lte` instead.
status_in: Returned assets should have a status that belongs to that list, if given.
Possible choices: `TODO`, `ONGOING`, `LABELED`, `TO_REVIEW` or `REVIEWED`.
label_type_in: Returned assets should have a label whose type belongs to that list, if given.
label_author_in: Returned assets should have a label whose author belongs to that list, if given. An author can be designated by the first name, the last name, or the first name + last name.
label_consensus_mark_gt: Deprecated. Use `label_consensus_mark_gte` instead.
label_consensus_mark_lt: Deprecated. Use `label_consensus_mark_lte` instead.
label_created_at: Returned assets should have a label whose creation date is equal to this date.
label_created_at_gt: Deprecated. Use `label_created_at_gte` instead.
label_created_at_lt: Deprecated. Use `label_created_at_lte` instead.
label_honeypot_mark_gt: Deprecated. Use `label_honeypot_mark_gte` instead.
label_honeypot_mark_lt: Deprecated. Use `label_honeypot_mark_lte` instead.
skipped: Returned assets should be skipped
updated_at_gte: Returned assets should have a label whose update date is greater or equal to this date.
updated_at_lte: Returned assets should have a label whose update date is lower or equal to this date.
format: If equal to 'pandas', returns a pandas DataFrame
disable_tqdm: If `True`, the progress bar will be disabled
as_generator: If `True`, a generator on the assets is returned.
label_category_search: Returned assets should have a label that follows this category search query.
download_media: Tell is the media have to be downloaded or not.
local_media_dir: Directory where the media are downloaded if `download_media` is True.
created_at_gte: Returned assets should have their import date greater or equal to this date.
created_at_lte: Returned assets should have their import date lower or equal to this date.
honeypot_mark_lte: Maximum amount of honeypot for the asset.
honeypot_mark_gte: Minimum amount of honeypot for the asset.
consensus_mark_lte: Maximum amount of consensus for the asset.
consensus_mark_gte: Minimum amount of consensus for the asset.
inference_mark_gte: Minimum amount of human/model IoU for the asset.
inference_mark_lte: Maximum amount of human/model IoU for the asset.
label_labeler_in: Returned assets should have a label whose labeler belongs to that list, if given.
label_labeler_not_in: Returned assets should have a label whose labeler does not belong to that list, if given.
label_reviewer_in: Returned assets should have a label whose reviewer belongs to that list, if given.
label_reviewer_not_in: Returned assets should have a label whose reviewer does not belong to that list, if given.
assignee_in: Returned assets should have an assigned user that belongs to that list, if given.
assignee_not_in: Returned assets should have an assigned user that does not belong to that list, if given.
label_consensus_mark_gte: Returned assets should have a label whose consensus is greater or equal to this number.
label_consensus_mark_lte: Returned assets should have a label whose consensus is lower or equal to this number.
label_created_at_lte: Returned assets should have a label whose creation date is lower or equal to this date.
label_created_at_gte: Returned assets should have a label whose creation date is greater or equal to this date.
label_honeypot_mark_gte: Returned assets should have a label whose honeypot is greater or equal to this number.
label_honeypot_mark_lte: Returned assets should have a label whose honeypot is lower or equal to this number.
issue_type: Returned assets should have issues of type `QUESTION` or `ISSUE`.
issue_status: Returned assets should have issues of status `OPEN` or `SOLVED`.
external_id_strictly_in: Returned assets should have external ids that match exactly the ones in the list.
external_id_in: Returned assets should have external ids that partially match the ones in the list.
For example, with `external_id_in=['abc']`, any asset with an external id containing `'abc'` will be returned.
label_output_format: If `parsed_label`, the labels in the assets will be parsed. More information on parsed labels in the [documentation](https://python-sdk-docs.kili-technology.com/latest/sdk/tutorials/label_parsing/).
!!! info "Dates format"
Date strings should have format: "YYYY-MM-DD"
!!! info "Filtering by label properties"
When the assets are filtered by label properties using any of `label_*` filter arguments, as soon as **one**
label matches **all** the label property criteria, the asset is kept and returned by the method. If any of the
`labels.*` or `latestLabel.*` subfields are queried, **all** the labels of the kept assets are returned together
with the assets (and not only the ones matching the criteria)
Returns:
An asset list, an asset generator or a pandas DataFrame that match a set of constraints.
Example:
```
# returns the assets list of the project
>>> kili.assets(project_id)
>>> kili.assets(project_id, asset_id=asset_id)
# returns a generator of the project assets
>>> kili.assets(project_id, as_generator=True)
```
!!! example "How to filter based on Metadata"
- `metadata_where = {key1: "value1"}` to filter on assets whose metadata
have key "key1" with value "value1"
- `metadata_where = {key1: ["value1", "value2"]}` to filter on assets whose metadata
have key "key1" with value "value1" or value "value2
- `metadata_where = {key2: [2, 10]}` to filter on assets whose metadata
have key "key2" with a value between 2 and 10.
!!! example "How to filter based on label categories"
The search query is composed of logical expressions following this format:
[job_name].[category_name].count [comparaison_operator] [value]
where:
- `[job_name]` is the name of the job in the interface
- `[category_name]` is the name of the category in the interface for this job
- `[comparaison_operator]` can be one of: [`==`, `>=`, `<=`, `<`, `>`]
- `[value]` is an integer that represents the count of such objects of the given category in the label
These operations can be separated by OR and AND operators:
```python
label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0`
label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0 OR JOB_NER.CATEGORY_B.count > 0`
label_category_search = `(JOB_CLASSIF.CATEGORY_A.count == 1 OR JOB_NER.CATEGORY_B.count > 0) AND JOB_BBOX.CATEGORY_C.count > 10`
```
"""
if format == "pandas" and as_generator:
raise ValueError(
'Argument values as_generator==True and format=="pandas" are not compatible.'
)
if external_id_contains is not None:
warnings.warn(
"external_id_contains is deprecated, use external_id_strictly_in instead",
DeprecationWarning,
stacklevel=1,
)
for arg_name, arg_value in zip(
(
"consensus_mark_gt",
"consensus_mark_lt",
"honeypot_mark_gt",
"honeypot_mark_lt",
"label_consensus_mark_gt",
"label_consensus_mark_lt",
"label_created_at_gt",
"label_created_at_lt",
"label_honeypot_mark_gt",
"label_honeypot_mark_lt",
),
(
consensus_mark_gt,
consensus_mark_lt,
honeypot_mark_gt,
honeypot_mark_lt,
label_consensus_mark_gt,
label_consensus_mark_lt,
label_created_at_gt,
label_created_at_lt,
label_honeypot_mark_gt,
label_honeypot_mark_lt,
),
):
if arg_value:
warnings.warn(
f"'{arg_name}' is deprecated, please use"
f" '{arg_name.replace('_gt', '_gte').replace('_lt', '_lte')}' instead.",
DeprecationWarning,
stacklevel=1,
)
disable_tqdm = disable_tqdm_if_as_generator(as_generator, disable_tqdm)
asset_use_cases = AssetUseCases(self.kili_api_gateway)
filters = AssetFilters(
project_id=ProjectId(project_id),
asset_id=AssetId(asset_id) if asset_id else None,
asset_id_in=cast(List[AssetId], asset_id_in) if asset_id_in else None,
asset_id_not_in=cast(List[AssetId], asset_id_not_in) if asset_id_not_in else None,
consensus_mark_gte=consensus_mark_gt or consensus_mark_gte,
consensus_mark_lte=consensus_mark_lt or consensus_mark_lte,
external_id_strictly_in=(
cast(List[AssetExternalId], external_id_strictly_in or external_id_contains)
if external_id_strictly_in or external_id_contains
else None
),
external_id_in=cast(List[AssetExternalId], external_id_in) if external_id_in else None,
honeypot_mark_gte=honeypot_mark_gt or honeypot_mark_gte,
honeypot_mark_lte=honeypot_mark_lt or honeypot_mark_lte,
inference_mark_gte=inference_mark_gte,
inference_mark_lte=inference_mark_lte,
label_author_in=label_author_in,
label_consensus_mark_gte=label_consensus_mark_gt or label_consensus_mark_gte,
label_consensus_mark_lte=label_consensus_mark_lt or label_consensus_mark_lte,
label_created_at=label_created_at,
label_created_at_gte=label_created_at_gt or label_created_at_gte,
label_created_at_lte=label_created_at_lt or label_created_at_lte,
label_honeypot_mark_gte=label_honeypot_mark_gt or label_honeypot_mark_gte,
label_honeypot_mark_lte=label_honeypot_mark_lt or label_honeypot_mark_lte,
label_type_in=label_type_in,
metadata_where=metadata_where,
skipped=skipped,
status_in=status_in,
updated_at_gte=updated_at_gte,
updated_at_lte=updated_at_lte,
label_category_search=label_category_search,
created_at_gte=created_at_gte,
created_at_lte=created_at_lte,
label_labeler_in=label_labeler_in,
label_labeler_not_in=label_labeler_not_in,
label_reviewer_in=label_reviewer_in,
label_reviewer_not_in=label_reviewer_not_in,
assignee_in=assignee_in,
assignee_not_in=assignee_not_in,
issue_status=issue_status,
issue_type=issue_type,
)
assets_gen = asset_use_cases.list_assets(
filters,
fields,
download_media=download_media,
local_media_dir=local_media_dir,
label_output_format=label_output_format,
options=QueryOptions(disable_tqdm=disable_tqdm, first=first, skip=skip),
)
if format == "pandas":
import pandas as pd # pylint: disable=import-outside-toplevel
return pd.DataFrame(list(assets_gen))
if as_generator:
return assets_gen
return list(assets_gen)
count_assets(self, project_id, asset_id=None, asset_id_in=None, asset_id_not_in=None, external_id_contains=None, metadata_where=None, status_in=None, consensus_mark_gt=None, consensus_mark_lt=None, honeypot_mark_gt=None, honeypot_mark_lt=None, label_type_in=None, label_author_in=None, label_consensus_mark_gt=None, label_consensus_mark_lt=None, label_created_at=None, label_created_at_gt=None, label_created_at_lt=None, label_honeypot_mark_gt=None, label_honeypot_mark_lt=None, skipped=None, updated_at_gte=None, updated_at_lte=None, label_category_search=None, created_at_gte=None, created_at_lte=None, honeypot_mark_gte=None, honeypot_mark_lte=None, consensus_mark_gte=None, consensus_mark_lte=None, inference_mark_gte=None, inference_mark_lte=None, label_labeler_in=None, label_labeler_not_in=None, label_reviewer_in=None, label_reviewer_not_in=None, assignee_in=None, assignee_not_in=None, label_consensus_mark_gte=None, label_consensus_mark_lte=None, label_created_at_gte=None, label_created_at_lte=None, label_honeypot_mark_gte=None, label_honeypot_mark_lte=None, issue_type=None, issue_status=None, external_id_strictly_in=None, external_id_in=None)
Count and return the number of assets with the given constraints.
Parameters beginning with 'label_' apply to labels, others apply to assets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
project_id |
str |
Identifier of the project |
required |
asset_id |
Optional[str] |
The unique id of the asset to retrieve. |
None |
asset_id_in |
Optional[List[str]] |
A list of the ids of the assets to retrieve. |
None |
asset_id_not_in |
Optional[List[str]] |
A list of the ids of the assets to exclude. |
None |
external_id_contains |
Optional[List[str]] |
Deprecated. Use |
None |
metadata_where |
Optional[dict] |
Filters by the values of the metadata of the asset. |
None |
status_in |
Optional[List[Literal['TODO', 'ONGOING', 'LABELED', 'REVIEWED', 'TO_REVIEW']]] |
Returned assets should have a status that belongs to that list, if given. Possible choices: |
None |
consensus_mark_gt |
Optional[float] |
Deprecated. Use |
None |
consensus_mark_lt |
Optional[float] |
Deprecated. Use |
None |
honeypot_mark_gt |
Optional[float] |
Deprecated. Use |
None |
honeypot_mark_lt |
Optional[float] |
Deprecated. Use |
None |
label_type_in |
Optional[List[Literal['AUTOSAVE', 'DEFAULT', 'INFERENCE', 'PREDICTION', 'REVIEW']]] |
Returned assets should have a label whose type belongs to that list, if given. |
None |
label_author_in |
Optional[List[str]] |
Returned assets should have a label whose author belongs to that list, if given. An author can be designated by the first name, the last name, or the first name + last name. |
None |
label_consensus_mark_gt |
Optional[float] |
Deprecated. Use |
None |
label_consensus_mark_lt |
Optional[float] |
Deprecated. Use |
None |
label_created_at |
Optional[str] |
Returned assets should have a label whose creation date is equal to this date. |
None |
label_created_at_gt |
Optional[str] |
Deprecated. Use |
None |
label_created_at_lt |
Optional[str] |
Deprecated. Use |
None |
label_honeypot_mark_gt |
Optional[float] |
Deprecated. Use |
None |
label_honeypot_mark_lt |
Optional[float] |
Deprecated. Use |
None |
skipped |
Optional[bool] |
Returned assets should be skipped. |
None |
updated_at_gte |
Optional[str] |
Returned assets should have a label whose update date is greated or equal to this date. |
None |
updated_at_lte |
Optional[str] |
Returned assets should have a label whose update date is lower or equal to this date. |
None |
label_category_search |
Optional[str] |
Returned assets should have a label that follows this category search query. |
None |
created_at_gte |
Optional[str] |
Returned assets should have their import date greater or equal to this date. |
None |
created_at_lte |
Optional[str] |
Returned assets should have their import date lower or equal to this date. |
None |
honeypot_mark_lte |
Optional[float] |
Maximum amount of honeypot for the asset. |
None |
honeypot_mark_gte |
Optional[float] |
Minimum amount of honeypot for the asset. |
None |
consensus_mark_lte |
Optional[float] |
Maximum amount of consensus for the asset. |
None |
consensus_mark_gte |
Optional[float] |
Minimum amount of consensus for the asset. |
None |
inference_mark_gte |
Optional[float] |
Minimum amount of human/model IoU for the asset. |
None |
inference_mark_lte |
Optional[float] |
Maximum amount of human/model IoU for the asset. |
None |
label_labeler_in |
Union[List[str], Tuple[str, ...]] |
Returned assets should have a label whose labeler belongs to that list, if given. |
None |
label_labeler_not_in |
Union[List[str], Tuple[str, ...]] |
Returned assets should have a label whose labeler does not belong to that list, if given. |
None |
label_reviewer_in |
Union[List[str], Tuple[str, ...]] |
Returned assets should have a label whose reviewer belongs to that list, if given. |
None |
label_reviewer_not_in |
Union[List[str], Tuple[str, ...]] |
Returned assets should have a label whose reviewer does not belong to that list, if given. |
None |
assignee_in |
Union[List[str], Tuple[str, ...]] |
Returned assets should have an assigned user that belongs to that list, if given. |
None |
assignee_not_in |
Union[List[str], Tuple[str, ...]] |
Returned assets should have an assigned user that does not belong to that list, if given. |
None |
label_consensus_mark_gte |
Optional[float] |
Returned assets should have a label whose consensus is greater or equal to this number. |
None |
label_consensus_mark_lte |
Optional[float] |
Returned assets should have a label whose consensus is lower or equal to this number. |
None |
label_created_at_lte |
Optional[str] |
Returned assets should have a label whose creation date is lower or equal to this date. |
None |
label_created_at_gte |
Optional[str] |
Returned assets should have a label whose creation date is greater or equal to this date. |
None |
label_honeypot_mark_gte |
Optional[float] |
Returned assets should have a label whose honeypot is greater or equal to this number. |
None |
label_honeypot_mark_lte |
Optional[float] |
Returned assets should have a label whose honeypot is lower or equal to this number. |
None |
issue_type |
Optional[Literal['ISSUE', 'QUESTION']] |
Returned assets should have issues of type |
None |
issue_status |
Optional[Literal['OPEN', 'SOLVED']] |
Returned assets should have issues of status |
None |
external_id_strictly_in |
Optional[List[str]] |
Returned assets should have external ids that match exactly the ones in the list. |
None |
external_id_in |
Optional[List[str]] |
Returned assets should have external ids that partially match the ones in the list.
For example, with |
None |
Dates format
Date strings should have format: "YYYY-MM-DD"
Returns:
Type | Description |
---|---|
int |
The number of assets that match the given constraints. |
Examples:
>>> kili.count_assets(project_id=project_id)
250
>>> kili.count_assets(asset_id=asset_id)
1
How to filter based on Metadata
metadata_where = {key1: "value1"}
to filter on assets whose metadata have key "key1" with value "value1"metadata_where = {key1: ["value1", "value2"]}
to filter on assets whose metadata have key "key1" with value "value1" or value "value2metadata_where = {key2: [2, 10]}
to filter on assets whose metadata have key "key2" with a value between 2 and 10.
Source code in kili/presentation/client/asset.py
def count_assets(
self,
project_id: str,
asset_id: Optional[str] = None,
asset_id_in: Optional[List[str]] = None,
asset_id_not_in: Optional[List[str]] = None,
external_id_contains: Optional[List[str]] = None,
metadata_where: Optional[dict] = None,
status_in: Optional[List[AssetStatus]] = None,
consensus_mark_gt: Optional[float] = None,
consensus_mark_lt: Optional[float] = None,
honeypot_mark_gt: Optional[float] = None,
honeypot_mark_lt: Optional[float] = None,
label_type_in: Optional[List[LabelType]] = None,
label_author_in: Optional[List[str]] = None,
label_consensus_mark_gt: Optional[float] = None,
label_consensus_mark_lt: Optional[float] = None,
label_created_at: Optional[str] = None,
label_created_at_gt: Optional[str] = None,
label_created_at_lt: Optional[str] = None,
label_honeypot_mark_gt: Optional[float] = None,
label_honeypot_mark_lt: Optional[float] = None,
skipped: Optional[bool] = None,
updated_at_gte: Optional[str] = None,
updated_at_lte: Optional[str] = None,
label_category_search: Optional[str] = None,
created_at_gte: Optional[str] = None,
created_at_lte: Optional[str] = None,
honeypot_mark_gte: Optional[float] = None,
honeypot_mark_lte: Optional[float] = None,
consensus_mark_gte: Optional[float] = None,
consensus_mark_lte: Optional[float] = None,
inference_mark_gte: Optional[float] = None,
inference_mark_lte: Optional[float] = None,
label_labeler_in: Optional[ListOrTuple[str]] = None,
label_labeler_not_in: Optional[ListOrTuple[str]] = None,
label_reviewer_in: Optional[ListOrTuple[str]] = None,
label_reviewer_not_in: Optional[ListOrTuple[str]] = None,
assignee_in: Optional[ListOrTuple[str]] = None,
assignee_not_in: Optional[ListOrTuple[str]] = None,
label_consensus_mark_gte: Optional[float] = None,
label_consensus_mark_lte: Optional[float] = None,
label_created_at_gte: Optional[str] = None,
label_created_at_lte: Optional[str] = None,
label_honeypot_mark_gte: Optional[float] = None,
label_honeypot_mark_lte: Optional[float] = None,
issue_type: Optional[IssueType] = None,
issue_status: Optional[IssueStatus] = None,
external_id_strictly_in: Optional[List[str]] = None,
external_id_in: Optional[List[str]] = None,
) -> int:
# pylint: disable=line-too-long
"""Count and return the number of assets with the given constraints.
Parameters beginning with 'label_' apply to labels, others apply to assets.
Args:
project_id: Identifier of the project
asset_id: The unique id of the asset to retrieve.
asset_id_in: A list of the ids of the assets to retrieve.
asset_id_not_in: A list of the ids of the assets to exclude.
external_id_contains: Deprecated. Use `external_id_strictly_in` instead.
metadata_where: Filters by the values of the metadata of the asset.
status_in: Returned assets should have a status that belongs to that list, if given. Possible choices: `TODO`, `ONGOING`, `LABELED`, `TO_REVIEW` or `REVIEWED`.
consensus_mark_gt: Deprecated. Use `consensus_mark_gte` instead.
consensus_mark_lt: Deprecated. Use `consensus_mark_lte` instead.
honeypot_mark_gt: Deprecated. Use `honeypot_mark_gte` instead.
honeypot_mark_lt: Deprecated. Use `honeypot_mark_lte` instead.
label_type_in: Returned assets should have a label whose type belongs to that list, if given.
label_author_in: Returned assets should have a label whose author belongs to that list, if given. An author can be designated by the first name, the last name, or the first name + last name.
label_consensus_mark_gt: Deprecated. Use `label_consensus_mark_gte` instead.
label_consensus_mark_lt: Deprecated. Use `label_consensus_mark_lte` instead.
label_created_at: Returned assets should have a label whose creation date is equal to this date.
label_created_at_gt: Deprecated. Use `label_created_at_gte` instead.
label_created_at_lt: Deprecated. Use `label_created_at_lte` instead.
label_honeypot_mark_gt: Deprecated. Use `label_honeypot_mark_gte` instead.
label_honeypot_mark_lt: Deprecated. Use `label_honeypot_mark_lte` instead.
skipped: Returned assets should be skipped.
updated_at_gte: Returned assets should have a label whose update date is greated or equal to this date.
updated_at_lte: Returned assets should have a label whose update date is lower or equal to this date.
label_category_search: Returned assets should have a label that follows this category search query.
created_at_gte: Returned assets should have their import date greater or equal to this date.
created_at_lte: Returned assets should have their import date lower or equal to this date.
honeypot_mark_lte: Maximum amount of honeypot for the asset.
honeypot_mark_gte: Minimum amount of honeypot for the asset.
consensus_mark_lte: Maximum amount of consensus for the asset.
consensus_mark_gte: Minimum amount of consensus for the asset.
inference_mark_gte: Minimum amount of human/model IoU for the asset.
inference_mark_lte: Maximum amount of human/model IoU for the asset.
label_labeler_in: Returned assets should have a label whose labeler belongs to that list, if given.
label_labeler_not_in: Returned assets should have a label whose labeler does not belong to that list, if given.
label_reviewer_in: Returned assets should have a label whose reviewer belongs to that list, if given.
label_reviewer_not_in: Returned assets should have a label whose reviewer does not belong to that list, if given.
assignee_in: Returned assets should have an assigned user that belongs to that list, if given.
assignee_not_in: Returned assets should have an assigned user that does not belong to that list, if given.
label_consensus_mark_gte: Returned assets should have a label whose consensus is greater or equal to this number.
label_consensus_mark_lte: Returned assets should have a label whose consensus is lower or equal to this number.
label_created_at_lte: Returned assets should have a label whose creation date is lower or equal to this date.
label_created_at_gte: Returned assets should have a label whose creation date is greater or equal to this date.
label_honeypot_mark_gte: Returned assets should have a label whose honeypot is greater or equal to this number.
label_honeypot_mark_lte: Returned assets should have a label whose honeypot is lower or equal to this number.
issue_type: Returned assets should have issues of type `QUESTION` or `ISSUE`.
issue_status: Returned assets should have issues of status `OPEN` or `SOLVED`.
external_id_strictly_in: Returned assets should have external ids that match exactly the ones in the list.
external_id_in: Returned assets should have external ids that partially match the ones in the list.
For example, with `external_id_in=['abc']`, any asset with an external id containing `'abc'` will be returned.
!!! info "Dates format"
Date strings should have format: "YYYY-MM-DD"
Returns:
The number of assets that match the given constraints.
Examples:
>>> kili.count_assets(project_id=project_id)
250
>>> kili.count_assets(asset_id=asset_id)
1
!!! example "How to filter based on Metadata"
- `metadata_where = {key1: "value1"}` to filter on assets whose metadata
have key "key1" with value "value1"
- `metadata_where = {key1: ["value1", "value2"]}` to filter on assets whose metadata
have key "key1" with value "value1" or value "value2
- `metadata_where = {key2: [2, 10]}` to filter on assets whose metadata
have key "key2" with a value between 2 and 10.
"""
if external_id_contains is not None:
warnings.warn(
"external_id_contains is deprecated, use external_id_strictly_in instead",
DeprecationWarning,
stacklevel=1,
)
for arg_name, arg_value in zip(
(
"consensus_mark_gt",
"consensus_mark_lt",
"honeypot_mark_gt",
"honeypot_mark_lt",
"label_consensus_mark_gt",
"label_consensus_mark_lt",
"label_created_at_gt",
"label_created_at_lt",
"label_honeypot_mark_gt",
"label_honeypot_mark_lt",
),
(
consensus_mark_gt,
consensus_mark_lt,
honeypot_mark_gt,
honeypot_mark_lt,
label_consensus_mark_gt,
label_consensus_mark_lt,
label_created_at_gt,
label_created_at_lt,
label_honeypot_mark_gt,
label_honeypot_mark_lt,
),
):
if arg_value:
warnings.warn(
f"'{arg_name}' is deprecated, please use"
f" '{arg_name.replace('_gt', '_gte').replace('_lt', '_lte')}' instead.",
DeprecationWarning,
stacklevel=1,
)
filters = AssetFilters(
project_id=ProjectId(project_id),
asset_id=AssetId(asset_id) if asset_id else None,
asset_id_in=cast(List[AssetId], asset_id_in) if asset_id_in else None,
asset_id_not_in=cast(List[AssetId], asset_id_not_in) if asset_id_not_in else None,
consensus_mark_gte=consensus_mark_gt or consensus_mark_gte,
consensus_mark_lte=consensus_mark_lt or consensus_mark_lte,
external_id_strictly_in=(
cast(List[AssetExternalId], external_id_strictly_in or external_id_contains)
if external_id_strictly_in or external_id_contains
else None
),
external_id_in=cast(List[AssetExternalId], external_id_in) if external_id_in else None,
honeypot_mark_gte=honeypot_mark_gt or honeypot_mark_gte,
honeypot_mark_lte=honeypot_mark_lt or honeypot_mark_lte,
inference_mark_gte=inference_mark_gte,
inference_mark_lte=inference_mark_lte,
label_author_in=label_author_in,
label_labeler_in=label_labeler_in,
label_labeler_not_in=label_labeler_not_in,
label_reviewer_in=label_reviewer_in,
label_reviewer_not_in=label_reviewer_not_in,
assignee_in=assignee_in,
assignee_not_in=assignee_not_in,
label_consensus_mark_gte=label_consensus_mark_gt or label_consensus_mark_gte,
label_consensus_mark_lte=label_consensus_mark_lt or label_consensus_mark_lte,
label_created_at=label_created_at,
label_created_at_gte=label_created_at_gt or label_created_at_gte,
label_created_at_lte=label_created_at_lt or label_created_at_lte,
label_honeypot_mark_gte=label_honeypot_mark_gt or label_honeypot_mark_gte,
label_honeypot_mark_lte=label_honeypot_mark_lt or label_honeypot_mark_lte,
label_type_in=label_type_in,
metadata_where=metadata_where,
skipped=skipped,
status_in=status_in,
updated_at_gte=updated_at_gte,
updated_at_lte=updated_at_lte,
label_category_search=label_category_search,
created_at_gte=created_at_gte,
created_at_lte=created_at_lte,
issue_status=issue_status,
issue_type=issue_type,
)
asset_use_cases = AssetUseCases(self.kili_api_gateway)
return asset_use_cases.count_assets(filters)
Set of Asset mutations.
Source code in kili/entrypoints/mutations/asset/__init__.py
class MutationsAsset(BaseOperationEntrypointMixin):
"""Set of Asset mutations."""
# pylint: disable=too-many-arguments,too-many-locals
@typechecked
def append_many_to_dataset(
self,
project_id: str,
content_array: Optional[Union[List[str], List[dict], List[List[dict]]]] = None,
multi_layer_content_array: Optional[List[List[dict]]] = None,
external_id_array: Optional[List[str]] = None,
id_array: Optional[List[str]] = None,
is_honeypot_array: Optional[List[bool]] = None,
status_array: Optional[List[str]] = None,
json_content_array: Optional[List[Union[List[Union[dict, str]], None]]] = None,
json_metadata_array: Optional[List[dict]] = None,
disable_tqdm: Optional[bool] = None,
wait_until_availability: bool = True,
from_csv: Optional[str] = None,
csv_separator: str = ",",
) -> Dict[Literal["id", "asset_ids"], Union[str, List[str]]]:
# pylint: disable=line-too-long
"""Append assets to a project.
Args:
project_id: Identifier of the project
content_array: List of elements added to the assets of the project
Must not be None except if you provide multi_layer_content_array or json_content_array.
- For a `TEXT` project, the content can be either raw text, or URLs to TEXT assets.
- For an `IMAGE` / `PDF` project, the content can be either URLs or paths to existing
images/pdf on your computer.
- For a VIDEO project, the content can be either URLs pointing to videos hosted on a web server or paths to
existing video files on your computer. If you want to import video from frames, look at the json_content
section below.
- For an `VIDEO_LEGACY` project, the content can be only be URLs.
- For an `LLM_RLHF` project, the content can be dicts with the keys `prompt` and `completions`,
paths to local json files or URLs to json files.
multi_layer_content_array: List containing multiple lists of paths.
Each path correspond to a layer of a geosat asset. Should be used only for `IMAGE` projects.
external_id_array: List of external ids given to identify the assets.
If None, random identifiers are created.
id_array: Disabled parameter. Do not use.
is_honeypot_array: Whether to use the asset for honeypot
status_array: DEPRECATED and does not have any effect.
json_content_array: Useful for `VIDEO` or `TEXT` or `IMAGE` projects only.
- For `VIDEO` projects, each element is a sequence of frames, i.e. a
list of URLs to images or a list of paths to images.
- For `TEXT` projects, each element is a json_content dict,
formatted according to documentation [on how to import
rich-text assets](https://python-sdk-docs.kili-technology.com/latest/sdk/tutorials/import_text_assets/).
- For `IMAGES` projects, it is used for satellite imagery each element is a list of json_content dicts
formatted according to documentation [on how to add multi-layer images]
(https://docs.kili-technology.com/docs/adding-assets-to-project#adding-multi-layer-images)
json_metadata_array: The metadata given to each asset should be stored in a json like dict with keys.
- Add metadata visible on the asset with the following keys: `imageUrl`, `text`, `url`.
Example for one asset: `json_metadata_array = [{'imageUrl': '','text': '','url': ''}]`.
- For VIDEO projects (and not VIDEO_LEGACY), you can specify a value with key 'processingParameters' to specify the sampling rate (default: 30).
Example for one asset: `json_metadata_array = [{'processingParameters': {'framesPlayedPerSecond': 10}}]`.
- In Image projects with geoTIFF assets, you can specify the epsg, the `minZoom` and `maxZoom` values for the `processingParameters` key.
- The epsg is a number that defines the projection that will be used for the asset. Values that can be used are either 4326 or 3857, the 2
projections that we support. If this number is not set, by default we keep the initial projection of the asset if it is 4326 or 3857, either
we reproject the asset to EPSG:3857 by default.
- The `minZoom` parameter defines the zoom level that users are not allowed to zoom out from. It also affects the zoom levels for which we
generate the tiles when tiling the asset (for asset with size > 30MB).
- The `maxZoom` value affects asset generation: the higher the value, the greater the level of details and the size of the asset. It also affects
the zoom levels for which we generate the tiles when tiling the asset (for asset with size > 30MB).
- Example for one asset: `json_metadata_array = [{'processingParameters': {'epsg': 3758, 'minZoom': 17, 'maxZoom': 19}}]`.
disable_tqdm: If `True`, the progress bar will be disabled
wait_until_availability: If `True`, the function will return once the assets are fully imported in Kili.
If `False`, the function will return faster but the assets might not be fully processed by the server.
from_csv: Path to a csv file containing the text assets to import.
Only used for `TEXT` projects.
If provided, `content_array` and `external_id_array` must be None.
The csv file header must specify the columns `content` and `externalId`.
csv_separator: Separator used in the csv file. Only used if `from_csv` is provided.
Returns:
A dictionary with two fields: `id` which is the project id and `asset_ids` which is a list of the created asset ids.
In the case where assets are uploaded asynchronously (for video imported as frames or big images or tiff images), the method return an empty list of asset ids.
Examples:
>>> kili.append_many_to_dataset(
project_id=project_id,
content_array=['https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png'])
!!! example "Recipe"
- For more detailed examples on how to import assets,
see [the recipe](https://docs.kili-technology.com/recipes/importing-data).
- For more detailed examples on how to import text assets,
see [the recipe](https://python-sdk-docs.kili-technology.com/latest/sdk/tutorials/import_text_assets/).
"""
if from_csv is not None:
if content_array is not None or external_id_array is not None:
raise ValueError(
"If from_csv is provided, content_array and external_id_array must not be"
" provided."
)
content_array, external_id_array = get_text_assets_from_csv(
from_csv=from_csv, csv_separator=csv_separator
)
if (
is_empty_list_with_warning("append_many_to_dataset", "content_array", content_array)
or is_empty_list_with_warning(
"append_many_to_dataset", "json_content_array", json_content_array
)
or is_empty_list_with_warning(
"append_many_to_dataset", "multi_layer_content_array", multi_layer_content_array
)
):
return {"id": project_id, "asset_ids": []}
if status_array is not None:
warnings.warn(
"status_array is deprecated and will not be sent in the call. Asset status is"
" automatically computed based on its labels and cannot be overwritten.",
DeprecationWarning,
stacklevel=1,
)
if (
content_array is None
and multi_layer_content_array is None
and json_content_array is None
):
raise ValueError(
"Variables content_array, multi_layer_content_array and json_content_array cannot be both None."
)
if content_array is not None and multi_layer_content_array is not None:
raise ValueError(
"Variables content_array and multi_layer_content_array cannot be both provided."
)
nb_data = (
len(content_array)
if content_array is not None
else (
len(multi_layer_content_array)
if multi_layer_content_array is not None
else len(json_content_array) # type:ignore
)
)
field_mapping = {
"content": content_array,
"multi_layer_content": multi_layer_content_array,
"json_content": json_content_array,
"external_id": external_id_array,
"id": id_array,
"json_metadata": json_metadata_array,
"is_honeypot": is_honeypot_array,
}
assets = [{}] * nb_data
for key, value in field_mapping.items():
if value is not None:
assets = [{**assets[i], key: value[i]} for i in range(nb_data)]
created_asset_ids = import_assets(
self, # pyright: ignore[reportGeneralTypeIssues]
project_id=ProjectId(project_id),
assets=assets,
disable_tqdm=disable_tqdm,
verify=wait_until_availability,
)
return {"id": project_id, "asset_ids": created_asset_ids}
@typechecked
def assign_assets_to_labelers(
self,
to_be_labeled_by_array: List[List[str]],
asset_ids: Optional[List[str]] = None,
external_ids: Optional[List[str]] = None,
project_id: Optional[str] = None,
) -> List[Dict[str, Any]]:
# pylint: disable=line-too-long
"""Assign a list of assets to a list of labelers.
Args:
asset_ids: The internal asset IDs to assign.
external_ids: The external asset IDs to assign (if `asset_ids` is not already provided).
project_id: The project ID. Only required if `external_ids` argument is provided.
to_be_labeled_by_array: The array of list of labelers to assign per labelers (list of userIds).
Returns:
A list of dictionaries with the asset ids.
Examples:
>>> kili.assign_assets_to_labelers(
asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
to_be_labeled_by_array=[['cm3yja6kv0i698697gcil9rtk','cm3yja6kv0i000000gcil9rtk'],
['cm3yja6kv0i698697gcil9rtk']]
)
# The following call resets the assignees on the asset_ids given.
>>> kili.assign_assets_to_labelers(
asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
to_be_labeled_by_array=[[], []]
)
"""
if is_empty_list_with_warning(
"assign_assets_to_labelers", "asset_ids", asset_ids
) and is_empty_list_with_warning("assign_assets_to_labelers", "external_ids", external_ids):
return []
if (asset_ids is not None and external_ids is not None) or (
asset_ids is None and external_ids is None
):
raise MissingArgumentError("Please provide either `asset_ids` or `external_ids`.")
resolved_asset_ids = self._resolve_asset_ids(asset_ids, external_ids, project_id)
if len(resolved_asset_ids) != len(to_be_labeled_by_array):
raise MutationError("There must be as many assets as there are lists of labelers.")
formated_results = []
for asset_id, to_be_labeled_by in zip(resolved_asset_ids, to_be_labeled_by_array):
payload = {"userIds": to_be_labeled_by, "where": {"id": asset_id}}
results = self.graphql_client.execute(GQL_ASSIGN_ASSETS, payload)
formated_results.append(results)
return formated_results
@typechecked
def update_properties_in_assets(
self,
asset_ids: Optional[List[str]] = None,
external_ids: Optional[List[str]] = None,
priorities: Optional[List[int]] = None,
json_metadatas: Optional[List[Union[dict, str]]] = None,
consensus_marks: Optional[List[float]] = None,
honeypot_marks: Optional[List[float]] = None,
to_be_labeled_by_array: Optional[List[List[str]]] = None,
contents: Optional[List[str]] = None,
json_contents: Optional[List[str]] = None,
status_array: Optional[List[str]] = None,
is_used_for_consensus_array: Optional[List[bool]] = None,
is_honeypot_array: Optional[List[bool]] = None,
project_id: Optional[str] = None,
resolution_array: Optional[List[Dict]] = None,
page_resolutions_array: Optional[
Union[List[List[dict]], List[List[PageResolution]]]
] = None,
) -> List[Dict[Literal["id"], str]]:
"""Update the properties of one or more assets.
Args:
asset_ids: The internal asset IDs to modify.
external_ids: The external asset IDs to modify (if `asset_ids` is not already provided).
priorities: You can change the priority of the assets.
By default, all assets have a priority of 0.
json_metadatas: The metadata given to an asset should be stored
in a json like dict with keys `imageUrl`, `text`, `url`:
`json_metadata = {'imageUrl': '','text': '','url': ''}`
consensus_marks: Should be between 0 and 1.
honeypot_marks: Should be between 0 and 1.
to_be_labeled_by_array: If given, each element of the list should contain the emails of
the labelers authorized to label the asset.
contents: - For a NLP project, the content can be directly in text format.
- For an Image / Video / Pdf project, the content must be hosted on a web server,
and you point Kili to your data by giving the URLs.
json_contents: - For a NLP project, the `json_content`
is a text formatted using RichText.
- For a Video project, the`json_content` is a json containg urls pointing
to each frame of the video.
status_array: DEPRECATED and does not have any effect.
is_used_for_consensus_array: Whether to use the asset to compute consensus kpis or not.
is_honeypot_array: Whether to use the asset for honeypot.
project_id: The project ID. Only required if `external_ids` argument is provided.
resolution_array: The resolution of each asset (for image and video assets).
Each resolution must be passed as a dictionary with keys `width` and `height`.
page_resolutions_array: The resolution of each page of the asset (for PDF assets).
Note that each element of the array should contain all the pages resolutions of the
corresponding asset. Each resolution can be passed as a
`kili.utils.assets.PageResolution` object, or as a dictionary with keys `width`,
`height`, `pageNumber` and optionally `rotation`.
Returns:
A list of dictionaries with the asset ids.
Examples:
>>> kili.update_properties_in_assets(
asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
consensus_marks=[1, 0.7],
contents=[None, 'https://to/second/asset.png'],
honeypot_marks=[0.8, 0.5],
is_honeypot_array=[True, True],
is_used_for_consensus_array=[True, False],
priorities=[None, 2],
to_be_labeled_by_array=[['test+pierre@kili-technology.com'], None],
)
# The following call updates the pages resolutions of PDF assets.
>>> kili.update_properties_in_assets(
asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
page_resolutions_array=[
[
PageResolution(width=480, height=640, page_number=1),
PageResolution(width=480, height=640, page_number=2),
],[
PageResolution(width=340, height=512, page_number=1),
PageResolution(width=680, height=1024, page_number=2, rotation=90),
PageResolution(width=680, height=1024, page_number=3),
]
],
)
"""
if is_empty_list_with_warning(
"update_properties_in_assets", "asset_ids", asset_ids
) or is_empty_list_with_warning(
"update_properties_in_assets", "external_ids", external_ids
):
return []
if status_array is not None:
warnings.warn(
"status_array is deprecated and will not be sent in the call. Asset status is"
" automatically computed based on its labels and cannot be overwritten.",
DeprecationWarning,
stacklevel=1,
)
if asset_ids is not None and external_ids is not None:
warnings.warn(
"The use of `external_ids` argument has changed. It is now used to identify"
" which properties of which assets to update. Please use"
" `kili.change_asset_external_ids()` method instead to change asset external"
" IDs.",
DeprecationWarning,
stacklevel=1,
)
raise MissingArgumentError("Please provide either `asset_ids` or `external_ids`.")
if to_be_labeled_by_array is not None:
warnings.warn(
"to_be_labeled_by_array is going to be deprecated. Please use"
" `kili.assign_assets_to_labelers()` method instead to assign assets",
DeprecationWarning,
stacklevel=1,
)
resolved_asset_ids = self._resolve_asset_ids(asset_ids, external_ids, project_id)
properties_to_batch = process_update_properties_in_assets_parameters(
cast(List[str], resolved_asset_ids),
priorities=priorities,
json_metadatas=json_metadatas,
consensus_marks=consensus_marks,
honeypot_marks=honeypot_marks,
to_be_labeled_by_array=to_be_labeled_by_array,
contents=contents,
json_contents=json_contents,
is_used_for_consensus_array=is_used_for_consensus_array,
is_honeypot_array=is_honeypot_array,
resolution_array=resolution_array,
page_resolutions_array=page_resolutions_array,
)
def generate_variables(batch: Dict) -> Dict:
asset_ids = batch.pop("assetId")
data_array = [dict(zip(batch, t)) for t in zip(*batch.values())] # type: ignore
return {
"whereArray": [{"id": asset_id} for asset_id in asset_ids],
"dataArray": data_array,
}
results = mutate_from_paginated_call(
self,
properties_to_batch,
generate_variables,
GQL_UPDATE_PROPERTIES_IN_ASSETS,
)
formated_results = [self.format_result("data", result, None) for result in results]
return [item for batch_list in formated_results for item in batch_list]
@typechecked
def change_asset_external_ids(
self,
new_external_ids: List[str],
asset_ids: Optional[List[str]] = None,
external_ids: Optional[List[str]] = None,
project_id: Optional[str] = None,
) -> List[Dict[Literal["id"], str]]:
"""Update the external IDs of one or more assets.
Args:
new_external_ids: The new external IDs of the assets.
asset_ids: The asset IDs to modify.
external_ids: The external asset IDs to modify (if `asset_ids` is not already provided).
project_id: The project ID. Only required if `external_ids` argument is provided.
Returns:
A list of dictionaries with the asset ids.
Examples:
>>> kili.change_asset_external_ids(
new_external_ids=["asset1", "asset2"],
asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
)
"""
if is_empty_list_with_warning(
"change_asset_external_ids", "new_external_ids", new_external_ids
):
return []
resolved_asset_ids = self._resolve_asset_ids(asset_ids, external_ids, project_id)
properties_to_batch = process_update_properties_in_assets_parameters(
asset_ids=cast(List[str], resolved_asset_ids),
external_ids=new_external_ids,
)
def generate_variables(batch: Dict) -> Dict:
asset_ids = batch.pop("assetId")
data_array = [dict(zip(batch, t)) for t in zip(*batch.values())] # type: ignore
return {
"whereArray": [{"id": asset_id} for asset_id in asset_ids],
"dataArray": data_array,
}
results = mutate_from_paginated_call(
self,
properties_to_batch,
generate_variables,
GQL_UPDATE_PROPERTIES_IN_ASSETS,
)
formated_results = [self.format_result("data", result, None) for result in results]
return [item for batch_list in formated_results for item in batch_list]
@typechecked
def delete_many_from_dataset(
self,
asset_ids: Optional[List[str]] = None,
external_ids: Optional[List[str]] = None,
project_id: Optional[str] = None,
) -> Optional[Dict[Literal["id"], str]]:
"""Delete assets from a project.
Args:
asset_ids: The list of asset internal IDs to delete.
external_ids: The list of asset external IDs to delete.
project_id: The project ID. Only required if `external_ids` argument is provided.
Returns:
A dict object with the project `id`.
"""
if is_empty_list_with_warning(
"delete_many_from_dataset", "asset_ids", asset_ids
) or is_empty_list_with_warning("delete_many_from_dataset", "external_ids", external_ids):
return None
resolved_asset_ids = self._resolve_asset_ids(asset_ids, external_ids, project_id)
properties_to_batch = {"asset_ids": resolved_asset_ids}
def generate_variables(batch):
return {"where": {"idIn": batch["asset_ids"]}}
@retry(
wait=wait_exponential(multiplier=1, min=1, max=8),
retry=retry_if_exception_type(MutationError),
reraise=True,
)
def verify_last_batch(last_batch: Dict, results: List) -> None:
"""Check that all assets in the last batch have been deleted."""
if project_id is not None:
project_id_ = project_id
# in some case the results is [{'data': None}]
elif isinstance(results[0]["data"], Dict) and results[0]["data"].get("id"):
project_id_ = results[0]["data"].get("id")
else:
return
asset_ids = last_batch["asset_ids"][-1:] # check last asset of the batch only
nb_assets_in_kili = self.kili_api_gateway.count_assets(
AssetFilters(
project_id=ProjectId(project_id_),
asset_id_in=asset_ids,
)
)
if nb_assets_in_kili > 0:
raise MutationError("Failed to delete some assets.")
results = mutate_from_paginated_call(
self,
properties_to_batch,
generate_variables,
GQL_DELETE_MANY_FROM_DATASET,
last_batch_callback=verify_last_batch,
)
return self.format_result("data", results[0])
@typechecked
def add_to_review(
self,
asset_ids: Optional[List[str]] = None,
external_ids: Optional[List[str]] = None,
project_id: Optional[str] = None,
) -> Optional[Dict[str, Any]]:
"""Add assets to review.
!!! warning
Assets without any label will be ignored.
Args:
asset_ids: The asset internal IDs to add to review.
external_ids: The asset external IDs to add to review.
project_id: The project ID. Only required if `external_ids` argument is provided.
Returns:
A dict object with the project `id` and the `asset_ids` of assets moved to review.
`None` if no assets have changed status (already had `TO_REVIEW` status for example).
An error message if mutation failed.
Examples:
>>> kili.add_to_review(
asset_ids=[
"ckg22d81r0jrg0885unmuswj8",
"ckg22d81s0jrh0885pdxfd03n",
],
)
"""
if is_empty_list_with_warning(
"add_to_review", "asset_ids", asset_ids
) or is_empty_list_with_warning("add_to_review", "external_ids", external_ids):
return None
resolved_asset_ids = self._resolve_asset_ids(asset_ids, external_ids, project_id)
properties_to_batch = {"asset_ids": resolved_asset_ids}
def generate_variables(batch):
return {"where": {"idIn": batch["asset_ids"]}}
@retry(
wait=wait_exponential(multiplier=1, min=1, max=8),
retry=retry_if_exception_type(MutationError),
reraise=True,
)
def verify_last_batch(last_batch: Dict, results: List) -> None:
"""Check that all assets in the last batch have been sent to review."""
if project_id is not None:
project_id_ = project_id
# in some case the results is [{'data': None}]
elif isinstance(results[0]["data"], Dict) and results[0]["data"].get("id"):
project_id_ = results[0]["data"].get("id")
else:
return
asset_ids = last_batch["asset_ids"][-1:] # check last asset of the batch only
nb_assets_in_review = self.kili_api_gateway.count_assets(
AssetFilters(
project_id=ProjectId(project_id_),
asset_id_in=asset_ids,
status_in=["TO_REVIEW"],
)
)
if len(asset_ids) != nb_assets_in_review:
raise MutationError("Failed to send some assets to review")
results = mutate_from_paginated_call(
self,
properties_to_batch,
generate_variables,
GQL_ADD_ALL_LABELED_ASSETS_TO_REVIEW,
last_batch_callback=verify_last_batch,
)
result = self.format_result("data", results[0])
# unlike send_back_to_queue, the add_to_review mutation doesn't always return the project ID
# it happens when no assets have been sent to review
if isinstance(result, dict) and "id" in result:
assets_in_review = self.kili_api_gateway.list_assets(
AssetFilters(
project_id=result["id"],
asset_id_in=resolved_asset_ids,
status_in=["TO_REVIEW"],
),
["id"],
QueryOptions(disable_tqdm=True),
)
result["asset_ids"] = [asset["id"] for asset in assets_in_review]
return result
@typechecked
def send_back_to_queue(
self,
asset_ids: Optional[List[str]] = None,
external_ids: Optional[List[str]] = None,
project_id: Optional[str] = None,
) -> Optional[Dict[str, Any]]:
"""Send assets back to queue.
Args:
asset_ids: List of internal IDs of assets to send back to queue.
external_ids: List of external IDs of assets to send back to queue.
project_id: The project ID. Only required if `external_ids` argument is provided.
Returns:
A dict object with the project `id` and the `asset_ids` of assets moved to queue.
An error message if mutation failed.
Examples:
>>> kili.send_back_to_queue(
asset_ids=[
"ckg22d81r0jrg0885unmuswj8",
"ckg22d81s0jrh0885pdxfd03n",
],
)
"""
if is_empty_list_with_warning(
"send_back_to_queue", "asset_ids", asset_ids
) or is_empty_list_with_warning("send_back_to_queue", "external_ids", external_ids):
return None
resolved_asset_ids = self._resolve_asset_ids(asset_ids, external_ids, project_id)
properties_to_batch = {"asset_ids": resolved_asset_ids}
def generate_variables(batch):
return {"where": {"idIn": batch["asset_ids"]}}
@retry(
wait=wait_exponential(multiplier=1, min=1, max=8),
retry=retry_if_exception_type(MutationError),
reraise=True,
)
def verify_last_batch(last_batch: Dict, results: List) -> None:
"""Check that all assets in the last batch have been sent back to queue."""
if project_id is not None:
project_id_ = project_id
# in some case the results is [{'data': None}]
elif isinstance(results[0]["data"], Dict) and results[0]["data"].get("id"):
project_id_ = results[0]["data"].get("id")
else:
return
asset_ids = last_batch["asset_ids"][-1:] # check lastest asset of the batch only
nb_assets_in_queue = self.kili_api_gateway.count_assets(
AssetFilters(
project_id=ProjectId(project_id_),
asset_id_in=asset_ids,
status_in=["ONGOING"],
)
)
if len(asset_ids) != nb_assets_in_queue:
raise MutationError("Failed to send some assets back to queue")
results = mutate_from_paginated_call(
self,
properties_to_batch,
generate_variables,
GQL_SEND_BACK_ASSETS_TO_QUEUE,
last_batch_callback=verify_last_batch,
)
result = self.format_result("data", results[0])
if isinstance(result, dict) and "id" in result:
assets_in_queue = self.kili_api_gateway.list_assets(
AssetFilters(
project_id=result["id"],
asset_id_in=resolved_asset_ids,
status_in=["ONGOING"],
),
["id"],
QueryOptions(disable_tqdm=True),
)
result["asset_ids"] = [asset["id"] for asset in assets_in_queue]
return result
add_to_review(self, asset_ids=None, external_ids=None, project_id=None)
Add assets to review.
Warning
Assets without any label will be ignored.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
asset_ids |
Optional[List[str]] |
The asset internal IDs to add to review. |
None |
external_ids |
Optional[List[str]] |
The asset external IDs to add to review. |
None |
project_id |
Optional[str] |
The project ID. Only required if |
None |
Returns:
Type | Description |
---|---|
Optional[Dict[str, Any]] |
A dict object with the project |
Examples:
>>> kili.add_to_review(
asset_ids=[
"ckg22d81r0jrg0885unmuswj8",
"ckg22d81s0jrh0885pdxfd03n",
],
)
Source code in kili/entrypoints/mutations/asset/__init__.py
def add_to_review(
self,
asset_ids: Optional[List[str]] = None,
external_ids: Optional[List[str]] = None,
project_id: Optional[str] = None,
) -> Optional[Dict[str, Any]]:
"""Add assets to review.
!!! warning
Assets without any label will be ignored.
Args:
asset_ids: The asset internal IDs to add to review.
external_ids: The asset external IDs to add to review.
project_id: The project ID. Only required if `external_ids` argument is provided.
Returns:
A dict object with the project `id` and the `asset_ids` of assets moved to review.
`None` if no assets have changed status (already had `TO_REVIEW` status for example).
An error message if mutation failed.
Examples:
>>> kili.add_to_review(
asset_ids=[
"ckg22d81r0jrg0885unmuswj8",
"ckg22d81s0jrh0885pdxfd03n",
],
)
"""
if is_empty_list_with_warning(
"add_to_review", "asset_ids", asset_ids
) or is_empty_list_with_warning("add_to_review", "external_ids", external_ids):
return None
resolved_asset_ids = self._resolve_asset_ids(asset_ids, external_ids, project_id)
properties_to_batch = {"asset_ids": resolved_asset_ids}
def generate_variables(batch):
return {"where": {"idIn": batch["asset_ids"]}}
@retry(
wait=wait_exponential(multiplier=1, min=1, max=8),
retry=retry_if_exception_type(MutationError),
reraise=True,
)
def verify_last_batch(last_batch: Dict, results: List) -> None:
"""Check that all assets in the last batch have been sent to review."""
if project_id is not None:
project_id_ = project_id
# in some case the results is [{'data': None}]
elif isinstance(results[0]["data"], Dict) and results[0]["data"].get("id"):
project_id_ = results[0]["data"].get("id")
else:
return
asset_ids = last_batch["asset_ids"][-1:] # check last asset of the batch only
nb_assets_in_review = self.kili_api_gateway.count_assets(
AssetFilters(
project_id=ProjectId(project_id_),
asset_id_in=asset_ids,
status_in=["TO_REVIEW"],
)
)
if len(asset_ids) != nb_assets_in_review:
raise MutationError("Failed to send some assets to review")
results = mutate_from_paginated_call(
self,
properties_to_batch,
generate_variables,
GQL_ADD_ALL_LABELED_ASSETS_TO_REVIEW,
last_batch_callback=verify_last_batch,
)
result = self.format_result("data", results[0])
# unlike send_back_to_queue, the add_to_review mutation doesn't always return the project ID
# it happens when no assets have been sent to review
if isinstance(result, dict) and "id" in result:
assets_in_review = self.kili_api_gateway.list_assets(
AssetFilters(
project_id=result["id"],
asset_id_in=resolved_asset_ids,
status_in=["TO_REVIEW"],
),
["id"],
QueryOptions(disable_tqdm=True),
)
result["asset_ids"] = [asset["id"] for asset in assets_in_review]
return result
append_many_to_dataset(self, project_id, content_array=None, multi_layer_content_array=None, external_id_array=None, id_array=None, is_honeypot_array=None, status_array=None, json_content_array=None, json_metadata_array=None, disable_tqdm=None, wait_until_availability=True, from_csv=None, csv_separator=',')
Append assets to a project.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
project_id |
str |
Identifier of the project |
required |
content_array |
Union[List[str], List[dict], List[List[dict]]] |
List of elements added to the assets of the project Must not be None except if you provide multi_layer_content_array or json_content_array.
|
None |
multi_layer_content_array |
Optional[List[List[dict]]] |
List containing multiple lists of paths.
Each path correspond to a layer of a geosat asset. Should be used only for |
None |
external_id_array |
Optional[List[str]] |
List of external ids given to identify the assets. If None, random identifiers are created. |
None |
id_array |
Optional[List[str]] |
Disabled parameter. Do not use. |
None |
is_honeypot_array |
Optional[List[bool]] |
Whether to use the asset for honeypot |
None |
status_array |
Optional[List[str]] |
DEPRECATED and does not have any effect. |
None |
json_content_array |
Optional[List[Union[List[Union[dict, str]], NoneType]]] |
Useful for
|
None |
json_metadata_array |
Optional[List[dict]] |
The metadata given to each asset should be stored in a json like dict with keys.
|
None |
disable_tqdm |
Optional[bool] |
If |
None |
wait_until_availability |
bool |
If |
True |
from_csv |
Optional[str] |
Path to a csv file containing the text assets to import.
Only used for |
None |
csv_separator |
str |
Separator used in the csv file. Only used if |
',' |
Returns:
Type | Description |
---|---|
A dictionary with two fields |
|
Examples:
>>> kili.append_many_to_dataset(
project_id=project_id,
content_array=['https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png'])
Recipe
- For more detailed examples on how to import assets, see the recipe.
- For more detailed examples on how to import text assets, see the recipe.
Source code in kili/entrypoints/mutations/asset/__init__.py
def append_many_to_dataset(
self,
project_id: str,
content_array: Optional[Union[List[str], List[dict], List[List[dict]]]] = None,
multi_layer_content_array: Optional[List[List[dict]]] = None,
external_id_array: Optional[List[str]] = None,
id_array: Optional[List[str]] = None,
is_honeypot_array: Optional[List[bool]] = None,
status_array: Optional[List[str]] = None,
json_content_array: Optional[List[Union[List[Union[dict, str]], None]]] = None,
json_metadata_array: Optional[List[dict]] = None,
disable_tqdm: Optional[bool] = None,
wait_until_availability: bool = True,
from_csv: Optional[str] = None,
csv_separator: str = ",",
) -> Dict[Literal["id", "asset_ids"], Union[str, List[str]]]:
# pylint: disable=line-too-long
"""Append assets to a project.
Args:
project_id: Identifier of the project
content_array: List of elements added to the assets of the project
Must not be None except if you provide multi_layer_content_array or json_content_array.
- For a `TEXT` project, the content can be either raw text, or URLs to TEXT assets.
- For an `IMAGE` / `PDF` project, the content can be either URLs or paths to existing
images/pdf on your computer.
- For a VIDEO project, the content can be either URLs pointing to videos hosted on a web server or paths to
existing video files on your computer. If you want to import video from frames, look at the json_content
section below.
- For an `VIDEO_LEGACY` project, the content can be only be URLs.
- For an `LLM_RLHF` project, the content can be dicts with the keys `prompt` and `completions`,
paths to local json files or URLs to json files.
multi_layer_content_array: List containing multiple lists of paths.
Each path correspond to a layer of a geosat asset. Should be used only for `IMAGE` projects.
external_id_array: List of external ids given to identify the assets.
If None, random identifiers are created.
id_array: Disabled parameter. Do not use.
is_honeypot_array: Whether to use the asset for honeypot
status_array: DEPRECATED and does not have any effect.
json_content_array: Useful for `VIDEO` or `TEXT` or `IMAGE` projects only.
- For `VIDEO` projects, each element is a sequence of frames, i.e. a
list of URLs to images or a list of paths to images.
- For `TEXT` projects, each element is a json_content dict,
formatted according to documentation [on how to import
rich-text assets](https://python-sdk-docs.kili-technology.com/latest/sdk/tutorials/import_text_assets/).
- For `IMAGES` projects, it is used for satellite imagery each element is a list of json_content dicts
formatted according to documentation [on how to add multi-layer images]
(https://docs.kili-technology.com/docs/adding-assets-to-project#adding-multi-layer-images)
json_metadata_array: The metadata given to each asset should be stored in a json like dict with keys.
- Add metadata visible on the asset with the following keys: `imageUrl`, `text`, `url`.
Example for one asset: `json_metadata_array = [{'imageUrl': '','text': '','url': ''}]`.
- For VIDEO projects (and not VIDEO_LEGACY), you can specify a value with key 'processingParameters' to specify the sampling rate (default: 30).
Example for one asset: `json_metadata_array = [{'processingParameters': {'framesPlayedPerSecond': 10}}]`.
- In Image projects with geoTIFF assets, you can specify the epsg, the `minZoom` and `maxZoom` values for the `processingParameters` key.
- The epsg is a number that defines the projection that will be used for the asset. Values that can be used are either 4326 or 3857, the 2
projections that we support. If this number is not set, by default we keep the initial projection of the asset if it is 4326 or 3857, either
we reproject the asset to EPSG:3857 by default.
- The `minZoom` parameter defines the zoom level that users are not allowed to zoom out from. It also affects the zoom levels for which we
generate the tiles when tiling the asset (for asset with size > 30MB).
- The `maxZoom` value affects asset generation: the higher the value, the greater the level of details and the size of the asset. It also affects
the zoom levels for which we generate the tiles when tiling the asset (for asset with size > 30MB).
- Example for one asset: `json_metadata_array = [{'processingParameters': {'epsg': 3758, 'minZoom': 17, 'maxZoom': 19}}]`.
disable_tqdm: If `True`, the progress bar will be disabled
wait_until_availability: If `True`, the function will return once the assets are fully imported in Kili.
If `False`, the function will return faster but the assets might not be fully processed by the server.
from_csv: Path to a csv file containing the text assets to import.
Only used for `TEXT` projects.
If provided, `content_array` and `external_id_array` must be None.
The csv file header must specify the columns `content` and `externalId`.
csv_separator: Separator used in the csv file. Only used if `from_csv` is provided.
Returns:
A dictionary with two fields: `id` which is the project id and `asset_ids` which is a list of the created asset ids.
In the case where assets are uploaded asynchronously (for video imported as frames or big images or tiff images), the method return an empty list of asset ids.
Examples:
>>> kili.append_many_to_dataset(
project_id=project_id,
content_array=['https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png'])
!!! example "Recipe"
- For more detailed examples on how to import assets,
see [the recipe](https://docs.kili-technology.com/recipes/importing-data).
- For more detailed examples on how to import text assets,
see [the recipe](https://python-sdk-docs.kili-technology.com/latest/sdk/tutorials/import_text_assets/).
"""
if from_csv is not None:
if content_array is not None or external_id_array is not None:
raise ValueError(
"If from_csv is provided, content_array and external_id_array must not be"
" provided."
)
content_array, external_id_array = get_text_assets_from_csv(
from_csv=from_csv, csv_separator=csv_separator
)
if (
is_empty_list_with_warning("append_many_to_dataset", "content_array", content_array)
or is_empty_list_with_warning(
"append_many_to_dataset", "json_content_array", json_content_array
)
or is_empty_list_with_warning(
"append_many_to_dataset", "multi_layer_content_array", multi_layer_content_array
)
):
return {"id": project_id, "asset_ids": []}
if status_array is not None:
warnings.warn(
"status_array is deprecated and will not be sent in the call. Asset status is"
" automatically computed based on its labels and cannot be overwritten.",
DeprecationWarning,
stacklevel=1,
)
if (
content_array is None
and multi_layer_content_array is None
and json_content_array is None
):
raise ValueError(
"Variables content_array, multi_layer_content_array and json_content_array cannot be both None."
)
if content_array is not None and multi_layer_content_array is not None:
raise ValueError(
"Variables content_array and multi_layer_content_array cannot be both provided."
)
nb_data = (
len(content_array)
if content_array is not None
else (
len(multi_layer_content_array)
if multi_layer_content_array is not None
else len(json_content_array) # type:ignore
)
)
field_mapping = {
"content": content_array,
"multi_layer_content": multi_layer_content_array,
"json_content": json_content_array,
"external_id": external_id_array,
"id": id_array,
"json_metadata": json_metadata_array,
"is_honeypot": is_honeypot_array,
}
assets = [{}] * nb_data
for key, value in field_mapping.items():
if value is not None:
assets = [{**assets[i], key: value[i]} for i in range(nb_data)]
created_asset_ids = import_assets(
self, # pyright: ignore[reportGeneralTypeIssues]
project_id=ProjectId(project_id),
assets=assets,
disable_tqdm=disable_tqdm,
verify=wait_until_availability,
)
return {"id": project_id, "asset_ids": created_asset_ids}
assign_assets_to_labelers(self, to_be_labeled_by_array, asset_ids=None, external_ids=None, project_id=None)
Assign a list of assets to a list of labelers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
asset_ids |
Optional[List[str]] |
The internal asset IDs to assign. |
None |
external_ids |
Optional[List[str]] |
The external asset IDs to assign (if |
None |
project_id |
Optional[str] |
The project ID. Only required if |
None |
to_be_labeled_by_array |
List[List[str]] |
The array of list of labelers to assign per labelers (list of userIds). |
required |
Returns:
Type | Description |
---|---|
List[Dict[str, Any]] |
A list of dictionaries with the asset ids. |
Examples:
>>> kili.assign_assets_to_labelers(
asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
to_be_labeled_by_array=[['cm3yja6kv0i698697gcil9rtk','cm3yja6kv0i000000gcil9rtk'],
['cm3yja6kv0i698697gcil9rtk']]
)
# The following call resets the assignees on the asset_ids given.
>>> kili.assign_assets_to_labelers(
asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
to_be_labeled_by_array=[[], []]
)
Source code in kili/entrypoints/mutations/asset/__init__.py
def assign_assets_to_labelers(
self,
to_be_labeled_by_array: List[List[str]],
asset_ids: Optional[List[str]] = None,
external_ids: Optional[List[str]] = None,
project_id: Optional[str] = None,
) -> List[Dict[str, Any]]:
# pylint: disable=line-too-long
"""Assign a list of assets to a list of labelers.
Args:
asset_ids: The internal asset IDs to assign.
external_ids: The external asset IDs to assign (if `asset_ids` is not already provided).
project_id: The project ID. Only required if `external_ids` argument is provided.
to_be_labeled_by_array: The array of list of labelers to assign per labelers (list of userIds).
Returns:
A list of dictionaries with the asset ids.
Examples:
>>> kili.assign_assets_to_labelers(
asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
to_be_labeled_by_array=[['cm3yja6kv0i698697gcil9rtk','cm3yja6kv0i000000gcil9rtk'],
['cm3yja6kv0i698697gcil9rtk']]
)
# The following call resets the assignees on the asset_ids given.
>>> kili.assign_assets_to_labelers(
asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
to_be_labeled_by_array=[[], []]
)
"""
if is_empty_list_with_warning(
"assign_assets_to_labelers", "asset_ids", asset_ids
) and is_empty_list_with_warning("assign_assets_to_labelers", "external_ids", external_ids):
return []
if (asset_ids is not None and external_ids is not None) or (
asset_ids is None and external_ids is None
):
raise MissingArgumentError("Please provide either `asset_ids` or `external_ids`.")
resolved_asset_ids = self._resolve_asset_ids(asset_ids, external_ids, project_id)
if len(resolved_asset_ids) != len(to_be_labeled_by_array):
raise MutationError("There must be as many assets as there are lists of labelers.")
formated_results = []
for asset_id, to_be_labeled_by in zip(resolved_asset_ids, to_be_labeled_by_array):
payload = {"userIds": to_be_labeled_by, "where": {"id": asset_id}}
results = self.graphql_client.execute(GQL_ASSIGN_ASSETS, payload)
formated_results.append(results)
return formated_results
change_asset_external_ids(self, new_external_ids, asset_ids=None, external_ids=None, project_id=None)
Update the external IDs of one or more assets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
new_external_ids |
List[str] |
The new external IDs of the assets. |
required |
asset_ids |
Optional[List[str]] |
The asset IDs to modify. |
None |
external_ids |
Optional[List[str]] |
The external asset IDs to modify (if |
None |
project_id |
Optional[str] |
The project ID. Only required if |
None |
Returns:
Type | Description |
---|---|
List[Dict[Literal['id'], str]] |
A list of dictionaries with the asset ids. |
Examples:
>>> kili.change_asset_external_ids(
new_external_ids=["asset1", "asset2"],
asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
)
Source code in kili/entrypoints/mutations/asset/__init__.py
def change_asset_external_ids(
self,
new_external_ids: List[str],
asset_ids: Optional[List[str]] = None,
external_ids: Optional[List[str]] = None,
project_id: Optional[str] = None,
) -> List[Dict[Literal["id"], str]]:
"""Update the external IDs of one or more assets.
Args:
new_external_ids: The new external IDs of the assets.
asset_ids: The asset IDs to modify.
external_ids: The external asset IDs to modify (if `asset_ids` is not already provided).
project_id: The project ID. Only required if `external_ids` argument is provided.
Returns:
A list of dictionaries with the asset ids.
Examples:
>>> kili.change_asset_external_ids(
new_external_ids=["asset1", "asset2"],
asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
)
"""
if is_empty_list_with_warning(
"change_asset_external_ids", "new_external_ids", new_external_ids
):
return []
resolved_asset_ids = self._resolve_asset_ids(asset_ids, external_ids, project_id)
properties_to_batch = process_update_properties_in_assets_parameters(
asset_ids=cast(List[str], resolved_asset_ids),
external_ids=new_external_ids,
)
def generate_variables(batch: Dict) -> Dict:
asset_ids = batch.pop("assetId")
data_array = [dict(zip(batch, t)) for t in zip(*batch.values())] # type: ignore
return {
"whereArray": [{"id": asset_id} for asset_id in asset_ids],
"dataArray": data_array,
}
results = mutate_from_paginated_call(
self,
properties_to_batch,
generate_variables,
GQL_UPDATE_PROPERTIES_IN_ASSETS,
)
formated_results = [self.format_result("data", result, None) for result in results]
return [item for batch_list in formated_results for item in batch_list]
delete_many_from_dataset(self, asset_ids=None, external_ids=None, project_id=None)
Delete assets from a project.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
asset_ids |
Optional[List[str]] |
The list of asset internal IDs to delete. |
None |
external_ids |
Optional[List[str]] |
The list of asset external IDs to delete. |
None |
project_id |
Optional[str] |
The project ID. Only required if |
None |
Returns:
Type | Description |
---|---|
Optional[Dict[Literal['id'], str]] |
A dict object with the project |
Source code in kili/entrypoints/mutations/asset/__init__.py
def delete_many_from_dataset(
self,
asset_ids: Optional[List[str]] = None,
external_ids: Optional[List[str]] = None,
project_id: Optional[str] = None,
) -> Optional[Dict[Literal["id"], str]]:
"""Delete assets from a project.
Args:
asset_ids: The list of asset internal IDs to delete.
external_ids: The list of asset external IDs to delete.
project_id: The project ID. Only required if `external_ids` argument is provided.
Returns:
A dict object with the project `id`.
"""
if is_empty_list_with_warning(
"delete_many_from_dataset", "asset_ids", asset_ids
) or is_empty_list_with_warning("delete_many_from_dataset", "external_ids", external_ids):
return None
resolved_asset_ids = self._resolve_asset_ids(asset_ids, external_ids, project_id)
properties_to_batch = {"asset_ids": resolved_asset_ids}
def generate_variables(batch):
return {"where": {"idIn": batch["asset_ids"]}}
@retry(
wait=wait_exponential(multiplier=1, min=1, max=8),
retry=retry_if_exception_type(MutationError),
reraise=True,
)
def verify_last_batch(last_batch: Dict, results: List) -> None:
"""Check that all assets in the last batch have been deleted."""
if project_id is not None:
project_id_ = project_id
# in some case the results is [{'data': None}]
elif isinstance(results[0]["data"], Dict) and results[0]["data"].get("id"):
project_id_ = results[0]["data"].get("id")
else:
return
asset_ids = last_batch["asset_ids"][-1:] # check last asset of the batch only
nb_assets_in_kili = self.kili_api_gateway.count_assets(
AssetFilters(
project_id=ProjectId(project_id_),
asset_id_in=asset_ids,
)
)
if nb_assets_in_kili > 0:
raise MutationError("Failed to delete some assets.")
results = mutate_from_paginated_call(
self,
properties_to_batch,
generate_variables,
GQL_DELETE_MANY_FROM_DATASET,
last_batch_callback=verify_last_batch,
)
return self.format_result("data", results[0])
send_back_to_queue(self, asset_ids=None, external_ids=None, project_id=None)
Send assets back to queue.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
asset_ids |
Optional[List[str]] |
List of internal IDs of assets to send back to queue. |
None |
external_ids |
Optional[List[str]] |
List of external IDs of assets to send back to queue. |
None |
project_id |
Optional[str] |
The project ID. Only required if |
None |
Returns:
Type | Description |
---|---|
Optional[Dict[str, Any]] |
A dict object with the project |
Examples:
>>> kili.send_back_to_queue(
asset_ids=[
"ckg22d81r0jrg0885unmuswj8",
"ckg22d81s0jrh0885pdxfd03n",
],
)
Source code in kili/entrypoints/mutations/asset/__init__.py
def send_back_to_queue(
self,
asset_ids: Optional[List[str]] = None,
external_ids: Optional[List[str]] = None,
project_id: Optional[str] = None,
) -> Optional[Dict[str, Any]]:
"""Send assets back to queue.
Args:
asset_ids: List of internal IDs of assets to send back to queue.
external_ids: List of external IDs of assets to send back to queue.
project_id: The project ID. Only required if `external_ids` argument is provided.
Returns:
A dict object with the project `id` and the `asset_ids` of assets moved to queue.
An error message if mutation failed.
Examples:
>>> kili.send_back_to_queue(
asset_ids=[
"ckg22d81r0jrg0885unmuswj8",
"ckg22d81s0jrh0885pdxfd03n",
],
)
"""
if is_empty_list_with_warning(
"send_back_to_queue", "asset_ids", asset_ids
) or is_empty_list_with_warning("send_back_to_queue", "external_ids", external_ids):
return None
resolved_asset_ids = self._resolve_asset_ids(asset_ids, external_ids, project_id)
properties_to_batch = {"asset_ids": resolved_asset_ids}
def generate_variables(batch):
return {"where": {"idIn": batch["asset_ids"]}}
@retry(
wait=wait_exponential(multiplier=1, min=1, max=8),
retry=retry_if_exception_type(MutationError),
reraise=True,
)
def verify_last_batch(last_batch: Dict, results: List) -> None:
"""Check that all assets in the last batch have been sent back to queue."""
if project_id is not None:
project_id_ = project_id
# in some case the results is [{'data': None}]
elif isinstance(results[0]["data"], Dict) and results[0]["data"].get("id"):
project_id_ = results[0]["data"].get("id")
else:
return
asset_ids = last_batch["asset_ids"][-1:] # check lastest asset of the batch only
nb_assets_in_queue = self.kili_api_gateway.count_assets(
AssetFilters(
project_id=ProjectId(project_id_),
asset_id_in=asset_ids,
status_in=["ONGOING"],
)
)
if len(asset_ids) != nb_assets_in_queue:
raise MutationError("Failed to send some assets back to queue")
results = mutate_from_paginated_call(
self,
properties_to_batch,
generate_variables,
GQL_SEND_BACK_ASSETS_TO_QUEUE,
last_batch_callback=verify_last_batch,
)
result = self.format_result("data", results[0])
if isinstance(result, dict) and "id" in result:
assets_in_queue = self.kili_api_gateway.list_assets(
AssetFilters(
project_id=result["id"],
asset_id_in=resolved_asset_ids,
status_in=["ONGOING"],
),
["id"],
QueryOptions(disable_tqdm=True),
)
result["asset_ids"] = [asset["id"] for asset in assets_in_queue]
return result
update_properties_in_assets(self, asset_ids=None, external_ids=None, priorities=None, json_metadatas=None, consensus_marks=None, honeypot_marks=None, to_be_labeled_by_array=None, contents=None, json_contents=None, status_array=None, is_used_for_consensus_array=None, is_honeypot_array=None, project_id=None, resolution_array=None, page_resolutions_array=None)
Update the properties of one or more assets.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
asset_ids |
Optional[List[str]] |
The internal asset IDs to modify. |
None |
external_ids |
Optional[List[str]] |
The external asset IDs to modify (if |
None |
priorities |
Optional[List[int]] |
You can change the priority of the assets. By default, all assets have a priority of 0. |
None |
json_metadatas |
Optional[List[Union[dict, str]]] |
The metadata given to an asset should be stored
in a json like dict with keys |
None |
consensus_marks |
Optional[List[float]] |
Should be between 0 and 1. |
None |
honeypot_marks |
Optional[List[float]] |
Should be between 0 and 1. |
None |
to_be_labeled_by_array |
Optional[List[List[str]]] |
If given, each element of the list should contain the emails of the labelers authorized to label the asset. |
None |
contents |
Optional[List[str]] |
|
None |
json_contents |
Optional[List[str]] |
|
None |
status_array |
Optional[List[str]] |
DEPRECATED and does not have any effect. |
None |
is_used_for_consensus_array |
Optional[List[bool]] |
Whether to use the asset to compute consensus kpis or not. |
None |
is_honeypot_array |
Optional[List[bool]] |
Whether to use the asset for honeypot. |
None |
project_id |
Optional[str] |
The project ID. Only required if |
None |
resolution_array |
Optional[List[Dict]] |
The resolution of each asset (for image and video assets).
Each resolution must be passed as a dictionary with keys |
None |
page_resolutions_array |
Union[List[List[dict]], List[List[kili.utils.assets.PageResolution]]] |
The resolution of each page of the asset (for PDF assets).
Note that each element of the array should contain all the pages resolutions of the
corresponding asset. Each resolution can be passed as a
|
None |
Returns:
Type | Description |
---|---|
List[Dict[Literal['id'], str]] |
A list of dictionaries with the asset ids. |
Examples:
>>> kili.update_properties_in_assets(
asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
consensus_marks=[1, 0.7],
contents=[None, 'https://to/second/asset.png'],
honeypot_marks=[0.8, 0.5],
is_honeypot_array=[True, True],
is_used_for_consensus_array=[True, False],
priorities=[None, 2],
to_be_labeled_by_array=[['test+pierre@kili-technology.com'], None],
)
# The following call updates the pages resolutions of PDF assets.
>>> kili.update_properties_in_assets(
asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
page_resolutions_array=[
[
PageResolution(width=480, height=640, page_number=1),
PageResolution(width=480, height=640, page_number=2),
],[
PageResolution(width=340, height=512, page_number=1),
PageResolution(width=680, height=1024, page_number=2, rotation=90),
PageResolution(width=680, height=1024, page_number=3),
]
],
)
Source code in kili/entrypoints/mutations/asset/__init__.py
def update_properties_in_assets(
self,
asset_ids: Optional[List[str]] = None,
external_ids: Optional[List[str]] = None,
priorities: Optional[List[int]] = None,
json_metadatas: Optional[List[Union[dict, str]]] = None,
consensus_marks: Optional[List[float]] = None,
honeypot_marks: Optional[List[float]] = None,
to_be_labeled_by_array: Optional[List[List[str]]] = None,
contents: Optional[List[str]] = None,
json_contents: Optional[List[str]] = None,
status_array: Optional[List[str]] = None,
is_used_for_consensus_array: Optional[List[bool]] = None,
is_honeypot_array: Optional[List[bool]] = None,
project_id: Optional[str] = None,
resolution_array: Optional[List[Dict]] = None,
page_resolutions_array: Optional[
Union[List[List[dict]], List[List[PageResolution]]]
] = None,
) -> List[Dict[Literal["id"], str]]:
"""Update the properties of one or more assets.
Args:
asset_ids: The internal asset IDs to modify.
external_ids: The external asset IDs to modify (if `asset_ids` is not already provided).
priorities: You can change the priority of the assets.
By default, all assets have a priority of 0.
json_metadatas: The metadata given to an asset should be stored
in a json like dict with keys `imageUrl`, `text`, `url`:
`json_metadata = {'imageUrl': '','text': '','url': ''}`
consensus_marks: Should be between 0 and 1.
honeypot_marks: Should be between 0 and 1.
to_be_labeled_by_array: If given, each element of the list should contain the emails of
the labelers authorized to label the asset.
contents: - For a NLP project, the content can be directly in text format.
- For an Image / Video / Pdf project, the content must be hosted on a web server,
and you point Kili to your data by giving the URLs.
json_contents: - For a NLP project, the `json_content`
is a text formatted using RichText.
- For a Video project, the`json_content` is a json containg urls pointing
to each frame of the video.
status_array: DEPRECATED and does not have any effect.
is_used_for_consensus_array: Whether to use the asset to compute consensus kpis or not.
is_honeypot_array: Whether to use the asset for honeypot.
project_id: The project ID. Only required if `external_ids` argument is provided.
resolution_array: The resolution of each asset (for image and video assets).
Each resolution must be passed as a dictionary with keys `width` and `height`.
page_resolutions_array: The resolution of each page of the asset (for PDF assets).
Note that each element of the array should contain all the pages resolutions of the
corresponding asset. Each resolution can be passed as a
`kili.utils.assets.PageResolution` object, or as a dictionary with keys `width`,
`height`, `pageNumber` and optionally `rotation`.
Returns:
A list of dictionaries with the asset ids.
Examples:
>>> kili.update_properties_in_assets(
asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
consensus_marks=[1, 0.7],
contents=[None, 'https://to/second/asset.png'],
honeypot_marks=[0.8, 0.5],
is_honeypot_array=[True, True],
is_used_for_consensus_array=[True, False],
priorities=[None, 2],
to_be_labeled_by_array=[['test+pierre@kili-technology.com'], None],
)
# The following call updates the pages resolutions of PDF assets.
>>> kili.update_properties_in_assets(
asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
page_resolutions_array=[
[
PageResolution(width=480, height=640, page_number=1),
PageResolution(width=480, height=640, page_number=2),
],[
PageResolution(width=340, height=512, page_number=1),
PageResolution(width=680, height=1024, page_number=2, rotation=90),
PageResolution(width=680, height=1024, page_number=3),
]
],
)
"""
if is_empty_list_with_warning(
"update_properties_in_assets", "asset_ids", asset_ids
) or is_empty_list_with_warning(
"update_properties_in_assets", "external_ids", external_ids
):
return []
if status_array is not None:
warnings.warn(
"status_array is deprecated and will not be sent in the call. Asset status is"
" automatically computed based on its labels and cannot be overwritten.",
DeprecationWarning,
stacklevel=1,
)
if asset_ids is not None and external_ids is not None:
warnings.warn(
"The use of `external_ids` argument has changed. It is now used to identify"
" which properties of which assets to update. Please use"
" `kili.change_asset_external_ids()` method instead to change asset external"
" IDs.",
DeprecationWarning,
stacklevel=1,
)
raise MissingArgumentError("Please provide either `asset_ids` or `external_ids`.")
if to_be_labeled_by_array is not None:
warnings.warn(
"to_be_labeled_by_array is going to be deprecated. Please use"
" `kili.assign_assets_to_labelers()` method instead to assign assets",
DeprecationWarning,
stacklevel=1,
)
resolved_asset_ids = self._resolve_asset_ids(asset_ids, external_ids, project_id)
properties_to_batch = process_update_properties_in_assets_parameters(
cast(List[str], resolved_asset_ids),
priorities=priorities,
json_metadatas=json_metadatas,
consensus_marks=consensus_marks,
honeypot_marks=honeypot_marks,
to_be_labeled_by_array=to_be_labeled_by_array,
contents=contents,
json_contents=json_contents,
is_used_for_consensus_array=is_used_for_consensus_array,
is_honeypot_array=is_honeypot_array,
resolution_array=resolution_array,
page_resolutions_array=page_resolutions_array,
)
def generate_variables(batch: Dict) -> Dict:
asset_ids = batch.pop("assetId")
data_array = [dict(zip(batch, t)) for t in zip(*batch.values())] # type: ignore
return {
"whereArray": [{"id": asset_id} for asset_id in asset_ids],
"dataArray": data_array,
}
results = mutate_from_paginated_call(
self,
properties_to_batch,
generate_variables,
GQL_UPDATE_PROPERTIES_IN_ASSETS,
)
formated_results = [self.format_result("data", result, None) for result in results]
return [item for batch_list in formated_results for item in batch_list]