Skip to content

Asset module

Queries

Set of Asset queries.

Source code in kili/entrypoints/queries/asset/__init__.py
class QueriesAsset:
    """Set of Asset queries."""

    # pylint: disable=too-many-arguments,too-many-locals,dangerous-default-value,redefined-builtin

    def __init__(self, auth: KiliAuth):
        """Initialize the subclass.

        Args:
            auth: KiliAuth object
        """
        self.auth = auth

    @overload
    def assets(
        self,
        project_id: str,
        asset_id: Optional[str] = None,
        skip: int = 0,
        fields: List[str] = [
            "content",
            "createdAt",
            "externalId",
            "id",
            "isHoneypot",
            "jsonMetadata",
            "labels.author.id",
            "labels.author.email",
            "labels.createdAt",
            "labels.id",
            "labels.jsonResponse",
            "skipped",
            "status",
        ],
        asset_id_in: Optional[List[str]] = None,
        consensus_mark_gt: Optional[float] = None,
        consensus_mark_lt: Optional[float] = None,
        disable_tqdm: bool = False,
        external_id_contains: Optional[List[str]] = None,
        first: Optional[int] = None,
        format: Optional[str] = None,
        honeypot_mark_gt: Optional[float] = None,
        honeypot_mark_lt: Optional[float] = None,
        label_author_in: Optional[List[str]] = None,
        label_consensus_mark_gt: Optional[float] = None,
        label_consensus_mark_lt: Optional[float] = None,
        label_created_at: Optional[str] = None,
        label_created_at_gt: Optional[str] = None,
        label_created_at_lt: Optional[str] = None,
        label_honeypot_mark_gt: Optional[float] = None,
        label_honeypot_mark_lt: Optional[float] = None,
        label_type_in: Optional[List[str]] = None,
        metadata_where: Optional[dict] = None,
        skipped: Optional[bool] = None,
        status_in: Optional[List[str]] = None,
        updated_at_gte: Optional[str] = None,
        updated_at_lte: Optional[str] = None,
        label_category_search: Optional[str] = None,
        download_media: bool = False,
        local_media_dir: Optional[str] = None,
        created_at_gte: Optional[str] = None,
        created_at_lte: Optional[str] = None,
        honeypot_mark_gte: Optional[float] = None,
        honeypot_mark_lte: Optional[float] = None,
        consensus_mark_gte: Optional[float] = None,
        consensus_mark_lte: Optional[float] = None,
        inference_mark_gte: Optional[float] = None,
        inference_mark_lte: Optional[float] = None,
        label_reviewer_in: Optional[List[str]] = None,
        label_consensus_mark_gte: Optional[float] = None,
        label_consensus_mark_lte: Optional[float] = None,
        label_created_at_gte: Optional[str] = None,
        label_created_at_lte: Optional[str] = None,
        label_honeypot_mark_gte: Optional[float] = None,
        label_honeypot_mark_lte: Optional[float] = None,
        issue_type: Optional[Literal["QUESTION", "ISSUE"]] = None,
        issue_status: Optional[Literal["OPEN", "SOLVED"]] = None,
        *,
        as_generator: Literal[True],
    ) -> Generator[Dict, None, None]:
        ...

    @overload
    def assets(
        self,
        project_id: str,
        asset_id: Optional[str] = None,
        skip: int = 0,
        fields: List[str] = [
            "content",
            "createdAt",
            "externalId",
            "id",
            "isHoneypot",
            "jsonMetadata",
            "labels.author.id",
            "labels.author.email",
            "labels.createdAt",
            "labels.id",
            "labels.jsonResponse",
            "skipped",
            "status",
        ],
        asset_id_in: Optional[List[str]] = None,
        consensus_mark_gt: Optional[float] = None,
        consensus_mark_lt: Optional[float] = None,
        disable_tqdm: bool = False,
        external_id_contains: Optional[List[str]] = None,
        first: Optional[int] = None,
        format: Optional[str] = None,
        honeypot_mark_gt: Optional[float] = None,
        honeypot_mark_lt: Optional[float] = None,
        label_author_in: Optional[List[str]] = None,
        label_consensus_mark_gt: Optional[float] = None,
        label_consensus_mark_lt: Optional[float] = None,
        label_created_at: Optional[str] = None,
        label_created_at_gt: Optional[str] = None,
        label_created_at_lt: Optional[str] = None,
        label_honeypot_mark_gt: Optional[float] = None,
        label_honeypot_mark_lt: Optional[float] = None,
        label_type_in: Optional[List[str]] = None,
        metadata_where: Optional[dict] = None,
        skipped: Optional[bool] = None,
        status_in: Optional[List[str]] = None,
        updated_at_gte: Optional[str] = None,
        updated_at_lte: Optional[str] = None,
        label_category_search: Optional[str] = None,
        download_media: bool = False,
        local_media_dir: Optional[str] = None,
        created_at_gte: Optional[str] = None,
        created_at_lte: Optional[str] = None,
        honeypot_mark_gte: Optional[float] = None,
        honeypot_mark_lte: Optional[float] = None,
        consensus_mark_gte: Optional[float] = None,
        consensus_mark_lte: Optional[float] = None,
        inference_mark_gte: Optional[float] = None,
        inference_mark_lte: Optional[float] = None,
        label_reviewer_in: Optional[List[str]] = None,
        label_consensus_mark_gte: Optional[float] = None,
        label_consensus_mark_lte: Optional[float] = None,
        label_created_at_gte: Optional[str] = None,
        label_created_at_lte: Optional[str] = None,
        label_honeypot_mark_gte: Optional[float] = None,
        label_honeypot_mark_lte: Optional[float] = None,
        issue_type: Optional[Literal["QUESTION", "ISSUE"]] = None,
        issue_status: Optional[Literal["OPEN", "SOLVED"]] = None,
        *,
        as_generator: Literal[False] = False,
    ) -> List[Dict]:
        ...

    @typechecked
    def assets(
        self,
        project_id: str,
        asset_id: Optional[str] = None,
        skip: int = 0,
        fields: List[str] = [
            "content",
            "createdAt",
            "externalId",
            "id",
            "isHoneypot",
            "jsonMetadata",
            "labels.author.id",
            "labels.author.email",
            "labels.createdAt",
            "labels.id",
            "labels.jsonResponse",
            "skipped",
            "status",
        ],
        asset_id_in: Optional[List[str]] = None,
        consensus_mark_gt: Optional[float] = None,
        consensus_mark_lt: Optional[float] = None,
        disable_tqdm: bool = False,
        external_id_contains: Optional[List[str]] = None,
        first: Optional[int] = None,
        format: Optional[str] = None,
        honeypot_mark_gt: Optional[float] = None,
        honeypot_mark_lt: Optional[float] = None,
        label_author_in: Optional[List[str]] = None,
        label_consensus_mark_gt: Optional[float] = None,
        label_consensus_mark_lt: Optional[float] = None,
        label_created_at: Optional[str] = None,
        label_created_at_gt: Optional[str] = None,
        label_created_at_lt: Optional[str] = None,
        label_honeypot_mark_gt: Optional[float] = None,
        label_honeypot_mark_lt: Optional[float] = None,
        label_type_in: Optional[List[str]] = None,
        metadata_where: Optional[dict] = None,
        skipped: Optional[bool] = None,
        status_in: Optional[List[str]] = None,
        updated_at_gte: Optional[str] = None,
        updated_at_lte: Optional[str] = None,
        label_category_search: Optional[str] = None,
        download_media: bool = False,
        local_media_dir: Optional[str] = None,
        created_at_gte: Optional[str] = None,
        created_at_lte: Optional[str] = None,
        honeypot_mark_gte: Optional[float] = None,
        honeypot_mark_lte: Optional[float] = None,
        consensus_mark_gte: Optional[float] = None,
        consensus_mark_lte: Optional[float] = None,
        inference_mark_gte: Optional[float] = None,
        inference_mark_lte: Optional[float] = None,
        label_reviewer_in: Optional[List[str]] = None,
        label_consensus_mark_gte: Optional[float] = None,
        label_consensus_mark_lte: Optional[float] = None,
        label_created_at_gte: Optional[str] = None,
        label_created_at_lte: Optional[str] = None,
        label_honeypot_mark_gte: Optional[float] = None,
        label_honeypot_mark_lte: Optional[float] = None,
        issue_type: Optional[Literal["QUESTION", "ISSUE"]] = None,
        issue_status: Optional[Literal["OPEN", "SOLVED"]] = None,
        *,
        as_generator: bool = False,
    ) -> Union[Iterable[Dict], pd.DataFrame]:
        # pylint: disable=line-too-long
        """Get an asset list, an asset generator or a pandas DataFrame that match a set of constraints.

        Args:
            project_id: Identifier of the project.
            asset_id: Identifier of the asset to retrieve.
            asset_id_in: A list of the IDs of the assets to retrieve.
            skip: Number of assets to skip (they are ordered by their date of creation, first to last).
            fields: All the fields to request among the possible fields for the assets.
                    See [the documentation](https://docs.kili-technology.com/reference/graphql-api#asset) for all possible fields.
            first: Maximum number of assets to return.
            consensus_mark_gt: Deprecated. Use `consensus_mark_gte` instead.
            consensus_mark_lt: Deprecated. Use `consensus_mark_lte` instead.
            external_id_contains: Returned assets have an external id that belongs to that list, if given.
            metadata_where: Filters by the values of the metadata of the asset.
            honeypot_mark_gt: Deprecated. Use `honeypot_mark_gte` instead.
            honeypot_mark_lt: Deprecated. Use `honeypot_mark_lte` instead.
            status_in: Returned assets should have a status that belongs to that list, if given.
                Possible choices: `TODO`, `ONGOING`, `LABELED`, `TO_REVIEW` or `REVIEWED`.
            label_type_in: Returned assets should have a label whose type belongs to that list, if given.
            label_author_in: Returned assets should have a label whose author belongs to that list, if given. An author can be designated by the first name, the last name, or the first name + last name.
            label_consensus_mark_gt: Deprecated. Use `label_consensus_mark_gte` instead.
            label_consensus_mark_lt: Deprecated. Use `label_consensus_mark_lte` instead.
            label_created_at: Returned assets should have a label whose creation date is equal to this date.
            label_created_at_gt: Deprecated. Use `label_created_at_gte` instead.
            label_created_at_lt: Deprecated. Use `label_created_at_lte` instead.
            label_honeypot_mark_gt: Deprecated. Use `label_honeypot_mark_gte` instead.
            label_honeypot_mark_lt: Deprecated. Use `label_honeypot_mark_lte` instead.
            skipped: Returned assets should be skipped
            updated_at_gte: Returned assets should have a label whose update date is greater or equal to this date.
            updated_at_lte: Returned assets should have a label whose update date is lower or equal to this date.
            format: If equal to 'pandas', returns a pandas DataFrame
            disable_tqdm: If `True`, the progress bar will be disabled
            as_generator: If `True`, a generator on the assets is returned.
            label_category_search: Returned assets should have a label that follows this category search query.
            download_media: Tell is the media have to be downloaded or not.
            local_media_dir: Directory where the media are downloaded if `download_media` is True.
            created_at_gte: Returned assets should have their import date greater or equal to this date.
            created_at_lte: Returned assets should have their import date lower or equal to this date.
            honeypot_mark_lte: Maximum amount of honeypot for the asset.
            honeypot_mark_gte: Minimum amount of honeypot for the asset.
            consensus_mark_lte: Maximum amount of consensus for the asset.
            consensus_mark_gte: Minimum amount of consensus for the asset.
            inference_mark_gte: Minimum amount of human/model IoU for the asset.
            inference_mark_lte: Maximum amount of human/model IoU for the asset.
            label_reviewer_in: Returned assets should have a label whose reviewer belongs to that list, if given.
            label_consensus_mark_gte: Returned assets should have a label whose consensus is greater or equal to this number.
            label_consensus_mark_lte: Returned assets should have a label whose consensus is lower or equal to this number.
            label_created_at_lte: Returned assets should have a label whose creation date is lower or equal to this date.
            label_created_at_gte: Returned assets should have a label whose creation date is greater or equal to this date.
            label_honeypot_mark_gte: Returned assets should have a label whose honeypot is greater or equal to this number.
            label_honeypot_mark_lte: Returned assets should have a label whose honeypot is lower or equal to this number.
            issue_type: Returned assets should have issues of type `QUESTION` or `ISSUE`.
            issue_status: Returned assets should have issues of status `OPEN` or `SOLVED`.

        !!! info "Dates format"
            Date strings should have format: "YYYY-MM-DD"

        Returns:
            A result object which contains the query if it was successful,
                or an error message.

        Example:
            ```
            # returns the assets list of the project
            >>> kili.assets(project_id)
            >>> kili.assets(project_id, asset_id=asset_id)
            # returns a generator of the project assets
            >>> kili.assets(project_id, as_generator=True)
            ```

        !!! example "How to filter based on Metadata"
            - `metadata_where = {key1: "value1"}` to filter on assets whose metadata
                have key "key1" with value "value1"
            - `metadata_where = {key1: ["value1", "value2"]}` to filter on assets whose metadata
                have key "key1" with value "value1" or value "value2
            - `metadata_where = {key2: [2, 10]}` to filter on assets whose metadata
                have key "key2" with a value between 2 and 10.

        !!! example "How to filter based on label categories"
            The search query is composed of logical expressions following this format:

                [job_name].[category_name].count [comparaison_operator] [value]
            where:

            - `[job_name]` is the name of the job in the interface
            - `[category_name]` is the name of the category in the interface for this job
            - `[comparaison_operator]` can be one of: [`==`, `>=`, `<=`, `<`, `>`]
            - `[value]` is an integer that represents the count of such objects of the given category in the label

            These operations can be separated by OR and AND operators

            Example:

                label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0`
                label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0 OR JOB_NER.CATEGORY_B.count > 0`
                label_category_search = `(JOB_CLASSIF.CATEGORY_A.count == 1 OR JOB_NER.CATEGORY_B.count > 0) AND JOB_BBOX.CATEGORY_C.count > 10`
        """
        if format == "pandas" and as_generator:
            raise ValueError(
                'Argument values as_generator==True and format=="pandas" are not compatible.'
            )

        if label_category_search:
            validate_category_search_query(label_category_search)

        for arg_name, arg_value in zip(
            (
                "consensus_mark_gt",
                "consensus_mark_lt",
                "honeypot_mark_gt",
                "honeypot_mark_lt",
                "label_consensus_mark_gt",
                "label_consensus_mark_lt",
                "label_created_at_gt",
                "label_created_at_lt",
                "label_honeypot_mark_gt",
                "label_honeypot_mark_lt",
            ),
            (
                consensus_mark_gt,
                consensus_mark_lt,
                honeypot_mark_gt,
                honeypot_mark_lt,
                label_consensus_mark_gt,
                label_consensus_mark_lt,
                label_created_at_gt,
                label_created_at_lt,
                label_honeypot_mark_gt,
                label_honeypot_mark_lt,
            ),
        ):
            if arg_value:
                warnings.warn(
                    (
                        f"'{arg_name}' is deprecated, please use"
                        f" '{arg_name.replace('_gt', '_gte').replace('_lt', '_lte')}' instead."
                    ),
                    DeprecationWarning,
                    stacklevel=1,
                )

        where = AssetWhere(
            project_id=project_id,
            asset_id=asset_id,
            asset_id_in=asset_id_in,
            consensus_mark_gte=consensus_mark_gt or consensus_mark_gte,
            consensus_mark_lte=consensus_mark_lt or consensus_mark_lte,
            external_id_contains=external_id_contains,
            honeypot_mark_gte=honeypot_mark_gt or honeypot_mark_gte,
            honeypot_mark_lte=honeypot_mark_lt or honeypot_mark_lte,
            inference_mark_gte=inference_mark_gte,
            inference_mark_lte=inference_mark_lte,
            label_author_in=label_author_in,
            label_consensus_mark_gte=label_consensus_mark_gt or label_consensus_mark_gte,
            label_consensus_mark_lte=label_consensus_mark_lt or label_consensus_mark_lte,
            label_created_at=label_created_at,
            label_created_at_gte=label_created_at_gt or label_created_at_gte,
            label_created_at_lte=label_created_at_lt or label_created_at_lte,
            label_honeypot_mark_gte=label_honeypot_mark_gt or label_honeypot_mark_gte,
            label_honeypot_mark_lte=label_honeypot_mark_lt or label_honeypot_mark_lte,
            label_type_in=label_type_in,
            metadata_where=metadata_where,
            skipped=skipped,
            status_in=status_in,
            updated_at_gte=updated_at_gte,
            updated_at_lte=updated_at_lte,
            label_category_search=label_category_search,
            created_at_gte=created_at_gte,
            created_at_lte=created_at_lte,
            label_reviewer_in=label_reviewer_in,
            issue_status=issue_status,
            issue_type=issue_type,
        )
        disable_tqdm = disable_tqdm_if_as_generator(as_generator, disable_tqdm)
        options = QueryOptions(disable_tqdm, first, skip)
        post_call_function, fields = get_download_assets_function(
            self.auth, download_media, fields, project_id, local_media_dir
        )
        assets_gen = AssetQuery(self.auth.client)(where, fields, options, post_call_function)

        if format == "pandas":
            return pd.DataFrame(list(assets_gen))
        if as_generator:
            return assets_gen
        return list(assets_gen)

    @typechecked
    def count_assets(
        self,
        project_id: str,
        asset_id: Optional[str] = None,
        asset_id_in: Optional[List[str]] = None,
        external_id_contains: Optional[List[str]] = None,
        metadata_where: Optional[dict] = None,
        status_in: Optional[List[str]] = None,
        consensus_mark_gt: Optional[float] = None,
        consensus_mark_lt: Optional[float] = None,
        honeypot_mark_gt: Optional[float] = None,
        honeypot_mark_lt: Optional[float] = None,
        label_type_in: Optional[List[str]] = None,
        label_author_in: Optional[List[str]] = None,
        label_consensus_mark_gt: Optional[float] = None,
        label_consensus_mark_lt: Optional[float] = None,
        label_created_at: Optional[str] = None,
        label_created_at_gt: Optional[str] = None,
        label_created_at_lt: Optional[str] = None,
        label_honeypot_mark_gt: Optional[float] = None,
        label_honeypot_mark_lt: Optional[float] = None,
        skipped: Optional[bool] = None,
        updated_at_gte: Optional[str] = None,
        updated_at_lte: Optional[str] = None,
        label_category_search: Optional[str] = None,
        created_at_gte: Optional[str] = None,
        created_at_lte: Optional[str] = None,
        honeypot_mark_gte: Optional[float] = None,
        honeypot_mark_lte: Optional[float] = None,
        consensus_mark_gte: Optional[float] = None,
        consensus_mark_lte: Optional[float] = None,
        inference_mark_gte: Optional[float] = None,
        inference_mark_lte: Optional[float] = None,
        label_reviewer_in: Optional[List[str]] = None,
        label_consensus_mark_gte: Optional[float] = None,
        label_consensus_mark_lte: Optional[float] = None,
        label_created_at_gte: Optional[str] = None,
        label_created_at_lte: Optional[str] = None,
        label_honeypot_mark_gte: Optional[float] = None,
        label_honeypot_mark_lte: Optional[float] = None,
        issue_type: Optional[Literal["QUESTION", "ISSUE"]] = None,
        issue_status: Optional[Literal["OPEN", "SOLVED"]] = None,
    ) -> int:
        # pylint: disable=line-too-long
        """Count and return the number of assets with the given constraints.

        Parameters beginning with 'label_' apply to labels, others apply to assets.

        Args:
            project_id: Identifier of the project
            asset_id: The unique id of the asset to retrieve.
            asset_id_in: A list of the ids of the assets to retrieve.
            external_id_contains: Returned assets should have an external id that belongs to that list, if given.
            metadata_where: Filters by the values of the metadata of the asset.
            status_in: Returned assets should have a status that belongs to that list, if given. Possible choices: `TODO`, `ONGOING`, `LABELED`, `TO_REVIEW` or `REVIEWED`.
            consensus_mark_gt: Deprecated. Use `consensus_mark_gte` instead.
            consensus_mark_lt: Deprecated. Use `consensus_mark_lte` instead.
            honeypot_mark_gt: Deprecated. Use `honeypot_mark_gte` instead.
            honeypot_mark_lt: Deprecated. Use `honeypot_mark_lte` instead.
            label_type_in: Returned assets should have a label whose type belongs to that list, if given.
            label_author_in: Returned assets should have a label whose author belongs to that list, if given. An author can be designated by the first name, the last name, or the first name + last name.
            label_consensus_mark_gt: Deprecated. Use `label_consensus_mark_gte` instead.
            label_consensus_mark_lt: Deprecated. Use `label_consensus_mark_lte` instead.
            label_created_at: Returned assets should have a label whose creation date is equal to this date.
            label_created_at_gt: Deprecated. Use `label_created_at_gte` instead.
            label_created_at_lt: Deprecated. Use `label_created_at_lte` instead.
            label_honeypot_mark_gt: Deprecated. Use `label_honeypot_mark_gte` instead.
            label_honeypot_mark_lt: Deprecated. Use `label_honeypot_mark_lte` instead.
            skipped: Returned assets should be skipped.
            updated_at_gte: Returned assets should have a label whose update date is greated or equal to this date.
            updated_at_lte: Returned assets should have a label whose update date is lower or equal to this date.
            label_category_search: Returned assets should have a label that follows this category search query.
            created_at_gte: Returned assets should have their import date greater or equal to this date.
            created_at_lte: Returned assets should have their import date lower or equal to this date.
            honeypot_mark_lte: Maximum amount of honeypot for the asset.
            honeypot_mark_gte: Minimum amount of honeypot for the asset.
            consensus_mark_lte: Maximum amount of consensus for the asset.
            consensus_mark_gte: Minimum amount of consensus for the asset.
            inference_mark_gte: Minimum amount of human/model IoU for the asset.
            inference_mark_lte: Maximum amount of human/model IoU for the asset.
            label_reviewer_in: Returned assets should have a label whose reviewer belongs to that list, if given.
            label_consensus_mark_gte: Returned assets should have a label whose consensus is greater or equal to this number.
            label_consensus_mark_lte: Returned assets should have a label whose consensus is lower or equal to this number.
            label_created_at_lte: Returned assets should have a label whose creation date is lower or equal to this date.
            label_created_at_gte: Returned assets should have a label whose creation date is greater or equal to this date.
            label_honeypot_mark_gte: Returned assets should have a label whose honeypot is greater or equal to this number.
            label_honeypot_mark_lte: Returned assets should have a label whose honeypot is lower or equal to this number.
            issue_type: Returned assets should have issues of type `QUESTION` or `ISSUE`.
            issue_status: Returned assets should have issues of status `OPEN` or `SOLVED`.

        !!! info "Dates format"
            Date strings should have format: "YYYY-MM-DD"

        Returns:
            A result object which contains the query if it was successful,
                or an error message.

        Examples:
            >>> kili.count_assets(project_id=project_id)
            250
            >>> kili.count_assets(asset_id=asset_id)
            1

        !!! example "How to filter based on Metadata"
            - `metadata_where = {key1: "value1"}` to filter on assets whose metadata
                have key "key1" with value "value1"
            - `metadata_where = {key1: ["value1", "value2"]}` to filter on assets whose metadata
                have key "key1" with value "value1" or value "value2
            - `metadata_where = {key2: [2, 10]}` to filter on assets whose metadata
                have key "key2" with a value between 2 and 10.
        """
        if label_category_search:
            validate_category_search_query(label_category_search)

        for arg_name, arg_value in zip(
            (
                "consensus_mark_gt",
                "consensus_mark_lt",
                "honeypot_mark_gt",
                "honeypot_mark_lt",
                "label_consensus_mark_gt",
                "label_consensus_mark_lt",
                "label_created_at_gt",
                "label_created_at_lt",
                "label_honeypot_mark_gt",
                "label_honeypot_mark_lt",
            ),
            (
                consensus_mark_gt,
                consensus_mark_lt,
                honeypot_mark_gt,
                honeypot_mark_lt,
                label_consensus_mark_gt,
                label_consensus_mark_lt,
                label_created_at_gt,
                label_created_at_lt,
                label_honeypot_mark_gt,
                label_honeypot_mark_lt,
            ),
        ):
            if arg_value:
                warnings.warn(
                    (
                        f"'{arg_name}' is deprecated, please use"
                        f" '{arg_name.replace('_gt', '_gte').replace('_lt', '_lte')}' instead."
                    ),
                    DeprecationWarning,
                    stacklevel=1,
                )

        where = AssetWhere(
            project_id=project_id,
            asset_id=asset_id,
            asset_id_in=asset_id_in,
            consensus_mark_gte=consensus_mark_gt or consensus_mark_gte,
            consensus_mark_lte=consensus_mark_lt or consensus_mark_lte,
            external_id_contains=external_id_contains,
            honeypot_mark_gte=honeypot_mark_gt or honeypot_mark_gte,
            honeypot_mark_lte=honeypot_mark_lt or honeypot_mark_lte,
            inference_mark_gte=inference_mark_gte,
            inference_mark_lte=inference_mark_lte,
            label_author_in=label_author_in,
            label_reviewer_in=label_reviewer_in,
            label_consensus_mark_gte=label_consensus_mark_gt or label_consensus_mark_gte,
            label_consensus_mark_lte=label_consensus_mark_lt or label_consensus_mark_lte,
            label_created_at=label_created_at,
            label_created_at_gte=label_created_at_gt or label_created_at_gte,
            label_created_at_lte=label_created_at_lt or label_created_at_lte,
            label_honeypot_mark_gte=label_honeypot_mark_gt or label_honeypot_mark_gte,
            label_honeypot_mark_lte=label_honeypot_mark_lt or label_honeypot_mark_lte,
            label_type_in=label_type_in,
            metadata_where=metadata_where,
            skipped=skipped,
            status_in=status_in,
            updated_at_gte=updated_at_gte,
            updated_at_lte=updated_at_lte,
            label_category_search=label_category_search,
            created_at_gte=created_at_gte,
            created_at_lte=created_at_lte,
            issue_status=issue_status,
            issue_type=issue_type,
        )
        return AssetQuery(self.auth.client).count(where)

assets(self, project_id, asset_id=None, skip=0, fields=['content', 'createdAt', 'externalId', 'id', 'isHoneypot', 'jsonMetadata', 'labels.author.id', 'labels.author.email', 'labels.createdAt', 'labels.id', 'labels.jsonResponse', 'skipped', 'status'], asset_id_in=None, consensus_mark_gt=None, consensus_mark_lt=None, disable_tqdm=False, external_id_contains=None, first=None, format=None, honeypot_mark_gt=None, honeypot_mark_lt=None, label_author_in=None, label_consensus_mark_gt=None, label_consensus_mark_lt=None, label_created_at=None, label_created_at_gt=None, label_created_at_lt=None, label_honeypot_mark_gt=None, label_honeypot_mark_lt=None, label_type_in=None, metadata_where=None, skipped=None, status_in=None, updated_at_gte=None, updated_at_lte=None, label_category_search=None, download_media=False, local_media_dir=None, created_at_gte=None, created_at_lte=None, honeypot_mark_gte=None, honeypot_mark_lte=None, consensus_mark_gte=None, consensus_mark_lte=None, inference_mark_gte=None, inference_mark_lte=None, label_reviewer_in=None, label_consensus_mark_gte=None, label_consensus_mark_lte=None, label_created_at_gte=None, label_created_at_lte=None, label_honeypot_mark_gte=None, label_honeypot_mark_lte=None, issue_type=None, issue_status=None, *, as_generator=False)

Get an asset list, an asset generator or a pandas DataFrame that match a set of constraints.

Parameters:

Name Type Description Default
project_id str

Identifier of the project.

required
asset_id Optional[str]

Identifier of the asset to retrieve.

None
asset_id_in Optional[List[str]]

A list of the IDs of the assets to retrieve.

None
skip int

Number of assets to skip (they are ordered by their date of creation, first to last).

0
fields List[str]

All the fields to request among the possible fields for the assets. See the documentation for all possible fields.

['content', 'createdAt', 'externalId', 'id', 'isHoneypot', 'jsonMetadata', 'labels.author.id', 'labels.author.email', 'labels.createdAt', 'labels.id', 'labels.jsonResponse', 'skipped', 'status']
first Optional[int]

Maximum number of assets to return.

None
consensus_mark_gt Optional[float]

Deprecated. Use consensus_mark_gte instead.

None
consensus_mark_lt Optional[float]

Deprecated. Use consensus_mark_lte instead.

None
external_id_contains Optional[List[str]]

Returned assets have an external id that belongs to that list, if given.

None
metadata_where Optional[dict]

Filters by the values of the metadata of the asset.

None
honeypot_mark_gt Optional[float]

Deprecated. Use honeypot_mark_gte instead.

None
honeypot_mark_lt Optional[float]

Deprecated. Use honeypot_mark_lte instead.

None
status_in Optional[List[str]]

Returned assets should have a status that belongs to that list, if given. Possible choices: TODO, ONGOING, LABELED, TO_REVIEW or REVIEWED.

None
label_type_in Optional[List[str]]

Returned assets should have a label whose type belongs to that list, if given.

None
label_author_in Optional[List[str]]

Returned assets should have a label whose author belongs to that list, if given. An author can be designated by the first name, the last name, or the first name + last name.

None
label_consensus_mark_gt Optional[float]

Deprecated. Use label_consensus_mark_gte instead.

None
label_consensus_mark_lt Optional[float]

Deprecated. Use label_consensus_mark_lte instead.

None
label_created_at Optional[str]

Returned assets should have a label whose creation date is equal to this date.

None
label_created_at_gt Optional[str]

Deprecated. Use label_created_at_gte instead.

None
label_created_at_lt Optional[str]

Deprecated. Use label_created_at_lte instead.

None
label_honeypot_mark_gt Optional[float]

Deprecated. Use label_honeypot_mark_gte instead.

None
label_honeypot_mark_lt Optional[float]

Deprecated. Use label_honeypot_mark_lte instead.

None
skipped Optional[bool]

Returned assets should be skipped

None
updated_at_gte Optional[str]

Returned assets should have a label whose update date is greater or equal to this date.

None
updated_at_lte Optional[str]

Returned assets should have a label whose update date is lower or equal to this date.

None
format Optional[str]

If equal to 'pandas', returns a pandas DataFrame

None
disable_tqdm bool

If True, the progress bar will be disabled

False
as_generator bool

If True, a generator on the assets is returned.

False
label_category_search Optional[str]

Returned assets should have a label that follows this category search query.

None
download_media bool

Tell is the media have to be downloaded or not.

False
local_media_dir Optional[str]

Directory where the media are downloaded if download_media is True.

None
created_at_gte Optional[str]

Returned assets should have their import date greater or equal to this date.

None
created_at_lte Optional[str]

Returned assets should have their import date lower or equal to this date.

None
honeypot_mark_lte Optional[float]

Maximum amount of honeypot for the asset.

None
honeypot_mark_gte Optional[float]

Minimum amount of honeypot for the asset.

None
consensus_mark_lte Optional[float]

Maximum amount of consensus for the asset.

None
consensus_mark_gte Optional[float]

Minimum amount of consensus for the asset.

None
inference_mark_gte Optional[float]

Minimum amount of human/model IoU for the asset.

None
inference_mark_lte Optional[float]

Maximum amount of human/model IoU for the asset.

None
label_reviewer_in Optional[List[str]]

Returned assets should have a label whose reviewer belongs to that list, if given.

None
label_consensus_mark_gte Optional[float]

Returned assets should have a label whose consensus is greater or equal to this number.

None
label_consensus_mark_lte Optional[float]

Returned assets should have a label whose consensus is lower or equal to this number.

None
label_created_at_lte Optional[str]

Returned assets should have a label whose creation date is lower or equal to this date.

None
label_created_at_gte Optional[str]

Returned assets should have a label whose creation date is greater or equal to this date.

None
label_honeypot_mark_gte Optional[float]

Returned assets should have a label whose honeypot is greater or equal to this number.

None
label_honeypot_mark_lte Optional[float]

Returned assets should have a label whose honeypot is lower or equal to this number.

None
issue_type Optional[typing_extensions.Literal['QUESTION', 'ISSUE']]

Returned assets should have issues of type QUESTION or ISSUE.

None
issue_status Optional[typing_extensions.Literal['OPEN', 'SOLVED']]

Returned assets should have issues of status OPEN or SOLVED.

None

Dates format

Date strings should have format: "YYYY-MM-DD"

Returns:

Type Description
Union[Iterable[Dict], pandas.core.frame.DataFrame]

A result object which contains the query if it was successful, or an error message.

Examples:

# returns the assets list of the project
>>> kili.assets(project_id)
>>> kili.assets(project_id, asset_id=asset_id)
# returns a generator of the project assets
>>> kili.assets(project_id, as_generator=True)

How to filter based on Metadata

  • metadata_where = {key1: "value1"} to filter on assets whose metadata have key "key1" with value "value1"
  • metadata_where = {key1: ["value1", "value2"]} to filter on assets whose metadata have key "key1" with value "value1" or value "value2
  • metadata_where = {key2: [2, 10]} to filter on assets whose metadata have key "key2" with a value between 2 and 10.

How to filter based on label categories

The search query is composed of logical expressions following this format:

[job_name].[category_name].count [comparaison_operator] [value]

where:

  • [job_name] is the name of the job in the interface
  • [category_name] is the name of the category in the interface for this job
  • [comparaison_operator] can be one of: [==, >=, <=, <, >]
  • [value] is an integer that represents the count of such objects of the given category in the label

These operations can be separated by OR and AND operators

Example:

label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0`
label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0 OR JOB_NER.CATEGORY_B.count > 0`
label_category_search = `(JOB_CLASSIF.CATEGORY_A.count == 1 OR JOB_NER.CATEGORY_B.count > 0) AND JOB_BBOX.CATEGORY_C.count > 10`
Source code in kili/entrypoints/queries/asset/__init__.py
@typechecked
def assets(
    self,
    project_id: str,
    asset_id: Optional[str] = None,
    skip: int = 0,
    fields: List[str] = [
        "content",
        "createdAt",
        "externalId",
        "id",
        "isHoneypot",
        "jsonMetadata",
        "labels.author.id",
        "labels.author.email",
        "labels.createdAt",
        "labels.id",
        "labels.jsonResponse",
        "skipped",
        "status",
    ],
    asset_id_in: Optional[List[str]] = None,
    consensus_mark_gt: Optional[float] = None,
    consensus_mark_lt: Optional[float] = None,
    disable_tqdm: bool = False,
    external_id_contains: Optional[List[str]] = None,
    first: Optional[int] = None,
    format: Optional[str] = None,
    honeypot_mark_gt: Optional[float] = None,
    honeypot_mark_lt: Optional[float] = None,
    label_author_in: Optional[List[str]] = None,
    label_consensus_mark_gt: Optional[float] = None,
    label_consensus_mark_lt: Optional[float] = None,
    label_created_at: Optional[str] = None,
    label_created_at_gt: Optional[str] = None,
    label_created_at_lt: Optional[str] = None,
    label_honeypot_mark_gt: Optional[float] = None,
    label_honeypot_mark_lt: Optional[float] = None,
    label_type_in: Optional[List[str]] = None,
    metadata_where: Optional[dict] = None,
    skipped: Optional[bool] = None,
    status_in: Optional[List[str]] = None,
    updated_at_gte: Optional[str] = None,
    updated_at_lte: Optional[str] = None,
    label_category_search: Optional[str] = None,
    download_media: bool = False,
    local_media_dir: Optional[str] = None,
    created_at_gte: Optional[str] = None,
    created_at_lte: Optional[str] = None,
    honeypot_mark_gte: Optional[float] = None,
    honeypot_mark_lte: Optional[float] = None,
    consensus_mark_gte: Optional[float] = None,
    consensus_mark_lte: Optional[float] = None,
    inference_mark_gte: Optional[float] = None,
    inference_mark_lte: Optional[float] = None,
    label_reviewer_in: Optional[List[str]] = None,
    label_consensus_mark_gte: Optional[float] = None,
    label_consensus_mark_lte: Optional[float] = None,
    label_created_at_gte: Optional[str] = None,
    label_created_at_lte: Optional[str] = None,
    label_honeypot_mark_gte: Optional[float] = None,
    label_honeypot_mark_lte: Optional[float] = None,
    issue_type: Optional[Literal["QUESTION", "ISSUE"]] = None,
    issue_status: Optional[Literal["OPEN", "SOLVED"]] = None,
    *,
    as_generator: bool = False,
) -> Union[Iterable[Dict], pd.DataFrame]:
    # pylint: disable=line-too-long
    """Get an asset list, an asset generator or a pandas DataFrame that match a set of constraints.

    Args:
        project_id: Identifier of the project.
        asset_id: Identifier of the asset to retrieve.
        asset_id_in: A list of the IDs of the assets to retrieve.
        skip: Number of assets to skip (they are ordered by their date of creation, first to last).
        fields: All the fields to request among the possible fields for the assets.
                See [the documentation](https://docs.kili-technology.com/reference/graphql-api#asset) for all possible fields.
        first: Maximum number of assets to return.
        consensus_mark_gt: Deprecated. Use `consensus_mark_gte` instead.
        consensus_mark_lt: Deprecated. Use `consensus_mark_lte` instead.
        external_id_contains: Returned assets have an external id that belongs to that list, if given.
        metadata_where: Filters by the values of the metadata of the asset.
        honeypot_mark_gt: Deprecated. Use `honeypot_mark_gte` instead.
        honeypot_mark_lt: Deprecated. Use `honeypot_mark_lte` instead.
        status_in: Returned assets should have a status that belongs to that list, if given.
            Possible choices: `TODO`, `ONGOING`, `LABELED`, `TO_REVIEW` or `REVIEWED`.
        label_type_in: Returned assets should have a label whose type belongs to that list, if given.
        label_author_in: Returned assets should have a label whose author belongs to that list, if given. An author can be designated by the first name, the last name, or the first name + last name.
        label_consensus_mark_gt: Deprecated. Use `label_consensus_mark_gte` instead.
        label_consensus_mark_lt: Deprecated. Use `label_consensus_mark_lte` instead.
        label_created_at: Returned assets should have a label whose creation date is equal to this date.
        label_created_at_gt: Deprecated. Use `label_created_at_gte` instead.
        label_created_at_lt: Deprecated. Use `label_created_at_lte` instead.
        label_honeypot_mark_gt: Deprecated. Use `label_honeypot_mark_gte` instead.
        label_honeypot_mark_lt: Deprecated. Use `label_honeypot_mark_lte` instead.
        skipped: Returned assets should be skipped
        updated_at_gte: Returned assets should have a label whose update date is greater or equal to this date.
        updated_at_lte: Returned assets should have a label whose update date is lower or equal to this date.
        format: If equal to 'pandas', returns a pandas DataFrame
        disable_tqdm: If `True`, the progress bar will be disabled
        as_generator: If `True`, a generator on the assets is returned.
        label_category_search: Returned assets should have a label that follows this category search query.
        download_media: Tell is the media have to be downloaded or not.
        local_media_dir: Directory where the media are downloaded if `download_media` is True.
        created_at_gte: Returned assets should have their import date greater or equal to this date.
        created_at_lte: Returned assets should have their import date lower or equal to this date.
        honeypot_mark_lte: Maximum amount of honeypot for the asset.
        honeypot_mark_gte: Minimum amount of honeypot for the asset.
        consensus_mark_lte: Maximum amount of consensus for the asset.
        consensus_mark_gte: Minimum amount of consensus for the asset.
        inference_mark_gte: Minimum amount of human/model IoU for the asset.
        inference_mark_lte: Maximum amount of human/model IoU for the asset.
        label_reviewer_in: Returned assets should have a label whose reviewer belongs to that list, if given.
        label_consensus_mark_gte: Returned assets should have a label whose consensus is greater or equal to this number.
        label_consensus_mark_lte: Returned assets should have a label whose consensus is lower or equal to this number.
        label_created_at_lte: Returned assets should have a label whose creation date is lower or equal to this date.
        label_created_at_gte: Returned assets should have a label whose creation date is greater or equal to this date.
        label_honeypot_mark_gte: Returned assets should have a label whose honeypot is greater or equal to this number.
        label_honeypot_mark_lte: Returned assets should have a label whose honeypot is lower or equal to this number.
        issue_type: Returned assets should have issues of type `QUESTION` or `ISSUE`.
        issue_status: Returned assets should have issues of status `OPEN` or `SOLVED`.

    !!! info "Dates format"
        Date strings should have format: "YYYY-MM-DD"

    Returns:
        A result object which contains the query if it was successful,
            or an error message.

    Example:
        ```
        # returns the assets list of the project
        >>> kili.assets(project_id)
        >>> kili.assets(project_id, asset_id=asset_id)
        # returns a generator of the project assets
        >>> kili.assets(project_id, as_generator=True)
        ```

    !!! example "How to filter based on Metadata"
        - `metadata_where = {key1: "value1"}` to filter on assets whose metadata
            have key "key1" with value "value1"
        - `metadata_where = {key1: ["value1", "value2"]}` to filter on assets whose metadata
            have key "key1" with value "value1" or value "value2
        - `metadata_where = {key2: [2, 10]}` to filter on assets whose metadata
            have key "key2" with a value between 2 and 10.

    !!! example "How to filter based on label categories"
        The search query is composed of logical expressions following this format:

            [job_name].[category_name].count [comparaison_operator] [value]
        where:

        - `[job_name]` is the name of the job in the interface
        - `[category_name]` is the name of the category in the interface for this job
        - `[comparaison_operator]` can be one of: [`==`, `>=`, `<=`, `<`, `>`]
        - `[value]` is an integer that represents the count of such objects of the given category in the label

        These operations can be separated by OR and AND operators

        Example:

            label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0`
            label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0 OR JOB_NER.CATEGORY_B.count > 0`
            label_category_search = `(JOB_CLASSIF.CATEGORY_A.count == 1 OR JOB_NER.CATEGORY_B.count > 0) AND JOB_BBOX.CATEGORY_C.count > 10`
    """
    if format == "pandas" and as_generator:
        raise ValueError(
            'Argument values as_generator==True and format=="pandas" are not compatible.'
        )

    if label_category_search:
        validate_category_search_query(label_category_search)

    for arg_name, arg_value in zip(
        (
            "consensus_mark_gt",
            "consensus_mark_lt",
            "honeypot_mark_gt",
            "honeypot_mark_lt",
            "label_consensus_mark_gt",
            "label_consensus_mark_lt",
            "label_created_at_gt",
            "label_created_at_lt",
            "label_honeypot_mark_gt",
            "label_honeypot_mark_lt",
        ),
        (
            consensus_mark_gt,
            consensus_mark_lt,
            honeypot_mark_gt,
            honeypot_mark_lt,
            label_consensus_mark_gt,
            label_consensus_mark_lt,
            label_created_at_gt,
            label_created_at_lt,
            label_honeypot_mark_gt,
            label_honeypot_mark_lt,
        ),
    ):
        if arg_value:
            warnings.warn(
                (
                    f"'{arg_name}' is deprecated, please use"
                    f" '{arg_name.replace('_gt', '_gte').replace('_lt', '_lte')}' instead."
                ),
                DeprecationWarning,
                stacklevel=1,
            )

    where = AssetWhere(
        project_id=project_id,
        asset_id=asset_id,
        asset_id_in=asset_id_in,
        consensus_mark_gte=consensus_mark_gt or consensus_mark_gte,
        consensus_mark_lte=consensus_mark_lt or consensus_mark_lte,
        external_id_contains=external_id_contains,
        honeypot_mark_gte=honeypot_mark_gt or honeypot_mark_gte,
        honeypot_mark_lte=honeypot_mark_lt or honeypot_mark_lte,
        inference_mark_gte=inference_mark_gte,
        inference_mark_lte=inference_mark_lte,
        label_author_in=label_author_in,
        label_consensus_mark_gte=label_consensus_mark_gt or label_consensus_mark_gte,
        label_consensus_mark_lte=label_consensus_mark_lt or label_consensus_mark_lte,
        label_created_at=label_created_at,
        label_created_at_gte=label_created_at_gt or label_created_at_gte,
        label_created_at_lte=label_created_at_lt or label_created_at_lte,
        label_honeypot_mark_gte=label_honeypot_mark_gt or label_honeypot_mark_gte,
        label_honeypot_mark_lte=label_honeypot_mark_lt or label_honeypot_mark_lte,
        label_type_in=label_type_in,
        metadata_where=metadata_where,
        skipped=skipped,
        status_in=status_in,
        updated_at_gte=updated_at_gte,
        updated_at_lte=updated_at_lte,
        label_category_search=label_category_search,
        created_at_gte=created_at_gte,
        created_at_lte=created_at_lte,
        label_reviewer_in=label_reviewer_in,
        issue_status=issue_status,
        issue_type=issue_type,
    )
    disable_tqdm = disable_tqdm_if_as_generator(as_generator, disable_tqdm)
    options = QueryOptions(disable_tqdm, first, skip)
    post_call_function, fields = get_download_assets_function(
        self.auth, download_media, fields, project_id, local_media_dir
    )
    assets_gen = AssetQuery(self.auth.client)(where, fields, options, post_call_function)

    if format == "pandas":
        return pd.DataFrame(list(assets_gen))
    if as_generator:
        return assets_gen
    return list(assets_gen)

count_assets(self, project_id, asset_id=None, asset_id_in=None, external_id_contains=None, metadata_where=None, status_in=None, consensus_mark_gt=None, consensus_mark_lt=None, honeypot_mark_gt=None, honeypot_mark_lt=None, label_type_in=None, label_author_in=None, label_consensus_mark_gt=None, label_consensus_mark_lt=None, label_created_at=None, label_created_at_gt=None, label_created_at_lt=None, label_honeypot_mark_gt=None, label_honeypot_mark_lt=None, skipped=None, updated_at_gte=None, updated_at_lte=None, label_category_search=None, created_at_gte=None, created_at_lte=None, honeypot_mark_gte=None, honeypot_mark_lte=None, consensus_mark_gte=None, consensus_mark_lte=None, inference_mark_gte=None, inference_mark_lte=None, label_reviewer_in=None, label_consensus_mark_gte=None, label_consensus_mark_lte=None, label_created_at_gte=None, label_created_at_lte=None, label_honeypot_mark_gte=None, label_honeypot_mark_lte=None, issue_type=None, issue_status=None)

Count and return the number of assets with the given constraints.

Parameters beginning with 'label_' apply to labels, others apply to assets.

Parameters:

Name Type Description Default
project_id str

Identifier of the project

required
asset_id Optional[str]

The unique id of the asset to retrieve.

None
asset_id_in Optional[List[str]]

A list of the ids of the assets to retrieve.

None
external_id_contains Optional[List[str]]

Returned assets should have an external id that belongs to that list, if given.

None
metadata_where Optional[dict]

Filters by the values of the metadata of the asset.

None
status_in Optional[List[str]]

Returned assets should have a status that belongs to that list, if given. Possible choices: TODO, ONGOING, LABELED, TO_REVIEW or REVIEWED.

None
consensus_mark_gt Optional[float]

Deprecated. Use consensus_mark_gte instead.

None
consensus_mark_lt Optional[float]

Deprecated. Use consensus_mark_lte instead.

None
honeypot_mark_gt Optional[float]

Deprecated. Use honeypot_mark_gte instead.

None
honeypot_mark_lt Optional[float]

Deprecated. Use honeypot_mark_lte instead.

None
label_type_in Optional[List[str]]

Returned assets should have a label whose type belongs to that list, if given.

None
label_author_in Optional[List[str]]

Returned assets should have a label whose author belongs to that list, if given. An author can be designated by the first name, the last name, or the first name + last name.

None
label_consensus_mark_gt Optional[float]

Deprecated. Use label_consensus_mark_gte instead.

None
label_consensus_mark_lt Optional[float]

Deprecated. Use label_consensus_mark_lte instead.

None
label_created_at Optional[str]

Returned assets should have a label whose creation date is equal to this date.

None
label_created_at_gt Optional[str]

Deprecated. Use label_created_at_gte instead.

None
label_created_at_lt Optional[str]

Deprecated. Use label_created_at_lte instead.

None
label_honeypot_mark_gt Optional[float]

Deprecated. Use label_honeypot_mark_gte instead.

None
label_honeypot_mark_lt Optional[float]

Deprecated. Use label_honeypot_mark_lte instead.

None
skipped Optional[bool]

Returned assets should be skipped.

None
updated_at_gte Optional[str]

Returned assets should have a label whose update date is greated or equal to this date.

None
updated_at_lte Optional[str]

Returned assets should have a label whose update date is lower or equal to this date.

None
label_category_search Optional[str]

Returned assets should have a label that follows this category search query.

None
created_at_gte Optional[str]

Returned assets should have their import date greater or equal to this date.

None
created_at_lte Optional[str]

Returned assets should have their import date lower or equal to this date.

None
honeypot_mark_lte Optional[float]

Maximum amount of honeypot for the asset.

None
honeypot_mark_gte Optional[float]

Minimum amount of honeypot for the asset.

None
consensus_mark_lte Optional[float]

Maximum amount of consensus for the asset.

None
consensus_mark_gte Optional[float]

Minimum amount of consensus for the asset.

None
inference_mark_gte Optional[float]

Minimum amount of human/model IoU for the asset.

None
inference_mark_lte Optional[float]

Maximum amount of human/model IoU for the asset.

None
label_reviewer_in Optional[List[str]]

Returned assets should have a label whose reviewer belongs to that list, if given.

None
label_consensus_mark_gte Optional[float]

Returned assets should have a label whose consensus is greater or equal to this number.

None
label_consensus_mark_lte Optional[float]

Returned assets should have a label whose consensus is lower or equal to this number.

None
label_created_at_lte Optional[str]

Returned assets should have a label whose creation date is lower or equal to this date.

None
label_created_at_gte Optional[str]

Returned assets should have a label whose creation date is greater or equal to this date.

None
label_honeypot_mark_gte Optional[float]

Returned assets should have a label whose honeypot is greater or equal to this number.

None
label_honeypot_mark_lte Optional[float]

Returned assets should have a label whose honeypot is lower or equal to this number.

None
issue_type Optional[typing_extensions.Literal['QUESTION', 'ISSUE']]

Returned assets should have issues of type QUESTION or ISSUE.

None
issue_status Optional[typing_extensions.Literal['OPEN', 'SOLVED']]

Returned assets should have issues of status OPEN or SOLVED.

None

Dates format

Date strings should have format: "YYYY-MM-DD"

Returns:

Type Description
int

A result object which contains the query if it was successful, or an error message.

Examples:

>>> kili.count_assets(project_id=project_id)
250
>>> kili.count_assets(asset_id=asset_id)
1

How to filter based on Metadata

  • metadata_where = {key1: "value1"} to filter on assets whose metadata have key "key1" with value "value1"
  • metadata_where = {key1: ["value1", "value2"]} to filter on assets whose metadata have key "key1" with value "value1" or value "value2
  • metadata_where = {key2: [2, 10]} to filter on assets whose metadata have key "key2" with a value between 2 and 10.
Source code in kili/entrypoints/queries/asset/__init__.py
@typechecked
def count_assets(
    self,
    project_id: str,
    asset_id: Optional[str] = None,
    asset_id_in: Optional[List[str]] = None,
    external_id_contains: Optional[List[str]] = None,
    metadata_where: Optional[dict] = None,
    status_in: Optional[List[str]] = None,
    consensus_mark_gt: Optional[float] = None,
    consensus_mark_lt: Optional[float] = None,
    honeypot_mark_gt: Optional[float] = None,
    honeypot_mark_lt: Optional[float] = None,
    label_type_in: Optional[List[str]] = None,
    label_author_in: Optional[List[str]] = None,
    label_consensus_mark_gt: Optional[float] = None,
    label_consensus_mark_lt: Optional[float] = None,
    label_created_at: Optional[str] = None,
    label_created_at_gt: Optional[str] = None,
    label_created_at_lt: Optional[str] = None,
    label_honeypot_mark_gt: Optional[float] = None,
    label_honeypot_mark_lt: Optional[float] = None,
    skipped: Optional[bool] = None,
    updated_at_gte: Optional[str] = None,
    updated_at_lte: Optional[str] = None,
    label_category_search: Optional[str] = None,
    created_at_gte: Optional[str] = None,
    created_at_lte: Optional[str] = None,
    honeypot_mark_gte: Optional[float] = None,
    honeypot_mark_lte: Optional[float] = None,
    consensus_mark_gte: Optional[float] = None,
    consensus_mark_lte: Optional[float] = None,
    inference_mark_gte: Optional[float] = None,
    inference_mark_lte: Optional[float] = None,
    label_reviewer_in: Optional[List[str]] = None,
    label_consensus_mark_gte: Optional[float] = None,
    label_consensus_mark_lte: Optional[float] = None,
    label_created_at_gte: Optional[str] = None,
    label_created_at_lte: Optional[str] = None,
    label_honeypot_mark_gte: Optional[float] = None,
    label_honeypot_mark_lte: Optional[float] = None,
    issue_type: Optional[Literal["QUESTION", "ISSUE"]] = None,
    issue_status: Optional[Literal["OPEN", "SOLVED"]] = None,
) -> int:
    # pylint: disable=line-too-long
    """Count and return the number of assets with the given constraints.

    Parameters beginning with 'label_' apply to labels, others apply to assets.

    Args:
        project_id: Identifier of the project
        asset_id: The unique id of the asset to retrieve.
        asset_id_in: A list of the ids of the assets to retrieve.
        external_id_contains: Returned assets should have an external id that belongs to that list, if given.
        metadata_where: Filters by the values of the metadata of the asset.
        status_in: Returned assets should have a status that belongs to that list, if given. Possible choices: `TODO`, `ONGOING`, `LABELED`, `TO_REVIEW` or `REVIEWED`.
        consensus_mark_gt: Deprecated. Use `consensus_mark_gte` instead.
        consensus_mark_lt: Deprecated. Use `consensus_mark_lte` instead.
        honeypot_mark_gt: Deprecated. Use `honeypot_mark_gte` instead.
        honeypot_mark_lt: Deprecated. Use `honeypot_mark_lte` instead.
        label_type_in: Returned assets should have a label whose type belongs to that list, if given.
        label_author_in: Returned assets should have a label whose author belongs to that list, if given. An author can be designated by the first name, the last name, or the first name + last name.
        label_consensus_mark_gt: Deprecated. Use `label_consensus_mark_gte` instead.
        label_consensus_mark_lt: Deprecated. Use `label_consensus_mark_lte` instead.
        label_created_at: Returned assets should have a label whose creation date is equal to this date.
        label_created_at_gt: Deprecated. Use `label_created_at_gte` instead.
        label_created_at_lt: Deprecated. Use `label_created_at_lte` instead.
        label_honeypot_mark_gt: Deprecated. Use `label_honeypot_mark_gte` instead.
        label_honeypot_mark_lt: Deprecated. Use `label_honeypot_mark_lte` instead.
        skipped: Returned assets should be skipped.
        updated_at_gte: Returned assets should have a label whose update date is greated or equal to this date.
        updated_at_lte: Returned assets should have a label whose update date is lower or equal to this date.
        label_category_search: Returned assets should have a label that follows this category search query.
        created_at_gte: Returned assets should have their import date greater or equal to this date.
        created_at_lte: Returned assets should have their import date lower or equal to this date.
        honeypot_mark_lte: Maximum amount of honeypot for the asset.
        honeypot_mark_gte: Minimum amount of honeypot for the asset.
        consensus_mark_lte: Maximum amount of consensus for the asset.
        consensus_mark_gte: Minimum amount of consensus for the asset.
        inference_mark_gte: Minimum amount of human/model IoU for the asset.
        inference_mark_lte: Maximum amount of human/model IoU for the asset.
        label_reviewer_in: Returned assets should have a label whose reviewer belongs to that list, if given.
        label_consensus_mark_gte: Returned assets should have a label whose consensus is greater or equal to this number.
        label_consensus_mark_lte: Returned assets should have a label whose consensus is lower or equal to this number.
        label_created_at_lte: Returned assets should have a label whose creation date is lower or equal to this date.
        label_created_at_gte: Returned assets should have a label whose creation date is greater or equal to this date.
        label_honeypot_mark_gte: Returned assets should have a label whose honeypot is greater or equal to this number.
        label_honeypot_mark_lte: Returned assets should have a label whose honeypot is lower or equal to this number.
        issue_type: Returned assets should have issues of type `QUESTION` or `ISSUE`.
        issue_status: Returned assets should have issues of status `OPEN` or `SOLVED`.

    !!! info "Dates format"
        Date strings should have format: "YYYY-MM-DD"

    Returns:
        A result object which contains the query if it was successful,
            or an error message.

    Examples:
        >>> kili.count_assets(project_id=project_id)
        250
        >>> kili.count_assets(asset_id=asset_id)
        1

    !!! example "How to filter based on Metadata"
        - `metadata_where = {key1: "value1"}` to filter on assets whose metadata
            have key "key1" with value "value1"
        - `metadata_where = {key1: ["value1", "value2"]}` to filter on assets whose metadata
            have key "key1" with value "value1" or value "value2
        - `metadata_where = {key2: [2, 10]}` to filter on assets whose metadata
            have key "key2" with a value between 2 and 10.
    """
    if label_category_search:
        validate_category_search_query(label_category_search)

    for arg_name, arg_value in zip(
        (
            "consensus_mark_gt",
            "consensus_mark_lt",
            "honeypot_mark_gt",
            "honeypot_mark_lt",
            "label_consensus_mark_gt",
            "label_consensus_mark_lt",
            "label_created_at_gt",
            "label_created_at_lt",
            "label_honeypot_mark_gt",
            "label_honeypot_mark_lt",
        ),
        (
            consensus_mark_gt,
            consensus_mark_lt,
            honeypot_mark_gt,
            honeypot_mark_lt,
            label_consensus_mark_gt,
            label_consensus_mark_lt,
            label_created_at_gt,
            label_created_at_lt,
            label_honeypot_mark_gt,
            label_honeypot_mark_lt,
        ),
    ):
        if arg_value:
            warnings.warn(
                (
                    f"'{arg_name}' is deprecated, please use"
                    f" '{arg_name.replace('_gt', '_gte').replace('_lt', '_lte')}' instead."
                ),
                DeprecationWarning,
                stacklevel=1,
            )

    where = AssetWhere(
        project_id=project_id,
        asset_id=asset_id,
        asset_id_in=asset_id_in,
        consensus_mark_gte=consensus_mark_gt or consensus_mark_gte,
        consensus_mark_lte=consensus_mark_lt or consensus_mark_lte,
        external_id_contains=external_id_contains,
        honeypot_mark_gte=honeypot_mark_gt or honeypot_mark_gte,
        honeypot_mark_lte=honeypot_mark_lt or honeypot_mark_lte,
        inference_mark_gte=inference_mark_gte,
        inference_mark_lte=inference_mark_lte,
        label_author_in=label_author_in,
        label_reviewer_in=label_reviewer_in,
        label_consensus_mark_gte=label_consensus_mark_gt or label_consensus_mark_gte,
        label_consensus_mark_lte=label_consensus_mark_lt or label_consensus_mark_lte,
        label_created_at=label_created_at,
        label_created_at_gte=label_created_at_gt or label_created_at_gte,
        label_created_at_lte=label_created_at_lt or label_created_at_lte,
        label_honeypot_mark_gte=label_honeypot_mark_gt or label_honeypot_mark_gte,
        label_honeypot_mark_lte=label_honeypot_mark_lt or label_honeypot_mark_lte,
        label_type_in=label_type_in,
        metadata_where=metadata_where,
        skipped=skipped,
        status_in=status_in,
        updated_at_gte=updated_at_gte,
        updated_at_lte=updated_at_lte,
        label_category_search=label_category_search,
        created_at_gte=created_at_gte,
        created_at_lte=created_at_lte,
        issue_status=issue_status,
        issue_type=issue_type,
    )
    return AssetQuery(self.auth.client).count(where)

Mutations

Set of Asset mutations.

Source code in kili/entrypoints/mutations/asset/__init__.py
class MutationsAsset:
    """Set of Asset mutations."""

    # pylint: disable=too-many-arguments,too-many-locals

    def __init__(self, auth: KiliAuth):
        """Initialize the subclass.

        Args:
            auth: KiliAuth object
        """
        self.auth = auth

    @typechecked
    def append_many_to_dataset(
        self,
        project_id: str,
        content_array: Optional[List[str]] = None,
        external_id_array: Optional[List[str]] = None,
        id_array: Optional[List[str]] = None,
        is_honeypot_array: Optional[List[bool]] = None,
        status_array: Optional[List[str]] = None,
        json_content_array: Optional[List[List[Union[dict, str]]]] = None,
        json_metadata_array: Optional[List[dict]] = None,
        disable_tqdm: bool = False,
        wait_until_availability: bool = True,
    ) -> Optional[Dict[str, str]]:
        # pylint: disable=line-too-long
        """Append assets to a project.

        Args:
            project_id: Identifier of the project
            content_array: List of elements added to the assets of the project
                Must not be None except if you provide json_content_array.

                - For a `TEXT` project, the content can be either raw text, or URLs to TEXT assets.
                - For an `IMAGE` / `PDF` project, the content can be either URLs or paths to existing
                    images/pdf on your computer.
                - For a VIDEO project, the content can be either URLs pointing to videos hosted on a web server or paths to
                existing video files on your computer. If you want to import video from frames, look at the json_content
                section below.
                - For an `VIDEO_LEGACY` project, the content can be only be URLs
            external_id_array: List of external ids given to identify the assets.
                If None, random identifiers are created.
            id_array: Disabled parameter. Do not use.
            is_honeypot_array:  Whether to use the asset for honeypot
            status_array: By default, all imported assets are set to `TODO`. Other options:
                `ONGOING`, `LABELED`, `REVIEWED`.
            json_content_array: Useful for `VIDEO` or `TEXT` projects only.

                - For `VIDEO` projects, each element is a sequence of frames, i.e. a
                    list of URLs to images or a list of paths to images.
                - For `TEXT` projects, each element is a json_content dict,
                    formatted according to documentation [on how to import
                rich-text assets](https://github.com/kili-technology/kili-python-sdk/blob/master/recipes/import_text_assets.ipynb)
            json_metadata_array: The metadata given to each asset should be stored in a json like dict with keys.

                - Add metadata visible on the asset with the following keys: `imageUrl`, `text`, `url`.
                    Example for one asset: `json_metadata_array = [{'imageUrl': '','text': '','url': ''}]`.
                - For VIDEO projects (and not VIDEO_LEGACY), you can specify a value with key 'processingParameters' to specify the sampling rate (default: 30).
                    Example for one asset: `json_metadata_array = [{'processingParameters': {'framesPlayedPerSecond': 10}}]`.
            disable_tqdm: If `True`, the progress bar will be disabled
            wait_until_availability: If `True`, the function will return once the assets are fully imported in Kili.
                If `False`, the function will return faster but the assets might not be fully processed by the server.

        Returns:
            A result object which indicates if the mutation was successful, or an error message.

        Examples:
            >>> kili.append_many_to_dataset(
                    project_id=project_id,
                    content_array=['https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png'])

        !!! example "Recipe"
            - For more detailed examples on how to import assets,
                see [the recipe](https://docs.kili-technology.com/recipes/importing-data).
            - For more detailed examples on how to import text assets,
                see [the recipe](https://github.com/kili-technology/kili-python-sdk/blob/master/recipes/import_text_assets.ipynb).
        """
        if is_empty_list_with_warning(
            "append_many_to_dataset", "content_array", content_array
        ) or is_empty_list_with_warning(
            "append_many_to_dataset", "json_content_array", json_content_array
        ):
            return None

        if status_array is not None:
            warnings.warn(
                (
                    "status_array is deprecated, asset status is automatically computed based on"
                    " its labels and cannot be overwritten."
                ),
                DeprecationWarning,
                stacklevel=1,
            )

        if content_array is None and json_content_array is None:
            raise ValueError("Variables content_array and json_content_array cannot be both None.")

        nb_data = (
            len(content_array)
            if content_array is not None
            else len(json_content_array)  # type:ignore
        )

        field_mapping = {
            "content": content_array,
            "json_content": json_content_array,
            "external_id": external_id_array,
            "id": id_array,
            "status": status_array,
            "json_metadata": json_metadata_array,
            "is_honeypot": is_honeypot_array,
        }
        assets = [{}] * nb_data
        for key, value in field_mapping.items():
            if value is not None:
                assets = [{**assets[i], key: value[i]} for i in range(nb_data)]
        result = import_assets(
            self.auth,
            project_id=project_id,
            assets=assets,
            disable_tqdm=disable_tqdm,
            verify=wait_until_availability,
        )
        return result

    @typechecked
    # pylint: disable=unused-argument
    def update_properties_in_assets(
        self,
        asset_ids: Optional[List[str]] = None,
        external_ids: Optional[List[str]] = None,
        priorities: Optional[List[int]] = None,
        json_metadatas: Optional[List[Union[dict, str]]] = None,
        consensus_marks: Optional[List[float]] = None,
        honeypot_marks: Optional[List[float]] = None,
        to_be_labeled_by_array: Optional[List[List[str]]] = None,
        contents: Optional[List[str]] = None,
        json_contents: Optional[List[str]] = None,
        status_array: Optional[List[str]] = None,
        is_used_for_consensus_array: Optional[List[bool]] = None,
        is_honeypot_array: Optional[List[bool]] = None,
        project_id: Optional[str] = None,
    ) -> List[Dict]:
        """Update the properties of one or more assets.

        Args:
            asset_ids: The internal asset IDs to modify.
            external_ids: The external asset IDs to modify (if `asset_ids` is not already provided).
            priorities: You can change the priority of the assets.
                By default, all assets have a priority of 0.
            json_metadatas: The metadata given to an asset should be stored
                in a json like dict with keys `imageUrl`, `text`, `url`:
                `json_metadata = {'imageUrl': '','text': '','url': ''}`
            consensus_marks: Should be between 0 and 1.
            honeypot_marks: Should be between 0 and 1.
            to_be_labeled_by_array: If given, each element of the list should contain the emails of
                the labelers authorized to label the asset.
            contents: - For a NLP project, the content can be directly in text format.
                - For an Image / Video / Pdf project, the content must be hosted on a web server,
                and you point Kili to your data by giving the URLs.
            json_contents: - For a NLP project, the `json_content`
                is a text formatted using RichText.
                - For a Video project, the`json_content` is a json containg urls pointing
                    to each frame of the video.
            status_array: Each element should be in `TODO`, `ONGOING`, `LABELED`,
                `TO_REVIEW`, `REVIEWED`.
            is_used_for_consensus_array: Whether to use the asset to compute consensus kpis or not.
            is_honeypot_array: Whether to use the asset for honeypot.
            project_id: The project ID. Only required if `external_ids` argument is provided.

        Returns:
            A result object which indicates if the mutation was successful,
                or an error message.

        Examples:
            >>> kili.update_properties_in_assets(
                    asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
                    consensus_marks=[1, 0.7],
                    contents=[None, 'https://to/second/asset.png'],
                    honeypot_marks=[0.8, 0.5],
                    is_honeypot_array=[True, True],
                    is_used_for_consensus_array=[True, False],
                    priorities=[None, 2],
                    status_array=['LABELED', 'REVIEWED'],
                    to_be_labeled_by_array=[['test+pierre@kili-technology.com'], None],
                )
        """
        if is_empty_list_with_warning(
            "update_properties_in_assets", "asset_ids", asset_ids
        ) or is_empty_list_with_warning(
            "update_properties_in_assets", "external_ids", external_ids
        ):
            return []

        if status_array is not None:
            warnings.warn(
                (
                    "status_array is deprecated, asset status is automatically computed based on"
                    " its labels and cannot be overwritten."
                ),
                DeprecationWarning,
                stacklevel=1,
            )

        if asset_ids is not None and external_ids is not None:
            warnings.warn(
                (
                    "The use of `external_ids` argument has changed. It is now used to identify"
                    " which properties of which assets to update. Please use"
                    " `kili.change_asset_external_ids()` method instead to change asset external"
                    " IDs."
                ),
                DeprecationWarning,
                stacklevel=1,
            )
            raise MissingArgumentError("Please provide either `asset_ids` or `external_ids`.")

        asset_ids = get_asset_ids_or_throw_error(self.auth, asset_ids, external_ids, project_id)

        saved_args = locals()
        parameters = {
            k: v
            for (k, v) in saved_args.items()
            if k
            in [
                "asset_ids",
                "priorities",
                "json_metadatas",
                "consensus_marks",
                "honeypot_marks",
                "to_be_labeled_by_array",
                "contents",
                "json_contents",
                "status_array",
                "is_used_for_consensus_array",
                "is_honeypot_array",
            ]
        }
        properties_to_batch = process_update_properties_in_assets_parameters(parameters)

        def generate_variables(batch: Dict) -> Dict:
            data = {
                "priority": batch["priorities"],
                "jsonMetadata": batch["json_metadatas"],
                "consensusMark": batch["consensus_marks"],
                "honeypotMark": batch["honeypot_marks"],
                "toBeLabeledBy": batch["to_be_labeled_by_array"],
                "shouldResetToBeLabeledBy": batch["should_reset_to_be_labeled_by_array"],
                "content": batch["contents"],
                "jsonContent": batch["json_contents"],
                "status": batch["status_array"],
                "isUsedForConsensus": batch["is_used_for_consensus_array"],
                "isHoneypot": batch["is_honeypot_array"],
            }
            data_array = [dict(zip(data, t)) for t in zip(*data.values())]
            return {
                "whereArray": [{"id": asset_id} for asset_id in batch["asset_ids"]],
                "dataArray": data_array,
            }

        results = _mutate_from_paginated_call(
            self,
            properties_to_batch,
            generate_variables,
            GQL_UPDATE_PROPERTIES_IN_ASSETS,
        )
        formated_results = [format_result("data", result, Asset) for result in results]
        return [item for batch_list in formated_results for item in batch_list]

    @typechecked
    def change_asset_external_ids(
        self,
        new_external_ids: List[str],
        asset_ids: Optional[List[str]] = None,
        external_ids: Optional[List[str]] = None,
        project_id: Optional[str] = None,
    ) -> List[Dict]:
        """Update the external IDs of one or more assets.

        Args:
            new_external_ids: The new external IDs of the assets.
            asset_ids: The asset IDs to modify.
            external_ids: The external asset IDs to modify (if `asset_ids` is not already provided).
            project_id: The project ID. Only required if `external_ids` argument is provided.

        Returns:
            A result object which indicates if the mutation was successful,
                or an error message.

        Examples:
            >>> kili.change_asset_external_ids(
                    new_external_ids=["asset1", "asset2"],
                    asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
                )
        """
        if is_empty_list_with_warning(
            "change_asset_external_ids", "new_external_ids", new_external_ids
        ):
            return []

        asset_ids = get_asset_ids_or_throw_error(self.auth, asset_ids, external_ids, project_id)

        parameters = {
            "asset_ids": asset_ids,
            "new_external_ids": new_external_ids,
            "json_metadatas": None,
            "to_be_labeled_by_array": None,
        }
        properties_to_batch = process_update_properties_in_assets_parameters(parameters)

        def generate_variables(batch: Dict) -> Dict:
            data = {
                "externalId": batch["new_external_ids"],
                "jsonMetadata": batch["json_metadatas"],
                "toBeLabeledBy": batch["to_be_labeled_by_array"],
                "shouldResetToBeLabeledBy": batch["should_reset_to_be_labeled_by_array"],
            }
            data_array = [dict(zip(data, t)) for t in zip(*data.values())]
            return {
                "whereArray": [{"id": asset_id} for asset_id in batch["asset_ids"]],
                "dataArray": data_array,
            }

        results = _mutate_from_paginated_call(
            self,
            properties_to_batch,
            generate_variables,
            GQL_UPDATE_PROPERTIES_IN_ASSETS,
        )
        formated_results = [format_result("data", result, Asset) for result in results]
        return [item for batch_list in formated_results for item in batch_list]

    @typechecked
    def delete_many_from_dataset(
        self,
        asset_ids: Optional[List[str]] = None,
        external_ids: Optional[List[str]] = None,
        project_id: Optional[str] = None,
    ) -> Asset:
        """Delete assets from a project.

        Args:
            asset_ids: The list of asset internal IDs to delete.
            external_ids: The list of asset external IDs to delete.
            project_id: The project ID. Only required if `external_ids` argument is provided.

        Returns:
            A result object which indicates if the mutation was successful,
                or an error message.
        """
        if is_empty_list_with_warning(
            "delete_many_from_dataset", "asset_ids", asset_ids
        ) or is_empty_list_with_warning("delete_many_from_dataset", "external_ids", external_ids):
            return Asset()

        asset_ids = get_asset_ids_or_throw_error(self.auth, asset_ids, external_ids, project_id)

        properties_to_batch: Dict[str, Optional[List[Any]]] = {"asset_ids": asset_ids}

        def generate_variables(batch):
            return {"where": {"idIn": batch["asset_ids"]}}

        @retry(
            wait=wait_exponential(multiplier=1, min=1, max=8),
            retry=retry_if_exception_type(MutationError),
            reraise=True,
        )
        def verify_last_batch(last_batch: Dict, results: List):
            """Check that all assets in the last batch have been deleted."""
            asset_ids = last_batch["asset_ids"][-1:]  # check last asset of the batch only
            nb_assets_in_kili = AssetQuery(self.auth.client).count(
                AssetWhere(
                    project_id=results[0]["data"]["id"],
                    asset_id_in=asset_ids,
                )
            )
            if nb_assets_in_kili > 0:
                raise MutationError("Failed to delete some assets.")

        results = _mutate_from_paginated_call(
            self,
            properties_to_batch,
            generate_variables,
            GQL_DELETE_MANY_FROM_DATASET,
            last_batch_callback=verify_last_batch,
        )
        return format_result("data", results[0], Asset)

    @typechecked
    def add_to_review(
        self,
        asset_ids: Optional[List[str]] = None,
        external_ids: Optional[List[str]] = None,
        project_id: Optional[str] = None,
    ) -> Optional[Dict[str, Any]]:
        """Add assets to review.

        !!! warning
            Assets without any label will be ignored.

        Args:
            asset_ids: The asset internal IDs to add to review.
            external_ids: The asset external IDs to add to review.
            project_id: The project ID. Only required if `external_ids` argument is provided.

        Returns:
            A dict object with the project `id` and the `asset_ids` of assets moved to review.
            `None` if no assets have changed status (already had `TO_REVIEW` status for example).
            An error message if mutation failed.

        Examples:
            >>> kili.add_to_review(
                    asset_ids=[
                        "ckg22d81r0jrg0885unmuswj8",
                        "ckg22d81s0jrh0885pdxfd03n",
                    ],
                )
        """
        if is_empty_list_with_warning(
            "add_to_review", "asset_ids", asset_ids
        ) or is_empty_list_with_warning("add_to_review", "external_ids", external_ids):
            return None

        asset_ids = get_asset_ids_or_throw_error(self.auth, asset_ids, external_ids, project_id)

        properties_to_batch: Dict[str, Optional[List[Any]]] = {"asset_ids": asset_ids}

        def generate_variables(batch):
            return {"where": {"idIn": batch["asset_ids"]}}

        @retry(
            wait=wait_exponential(multiplier=1, min=1, max=8),
            retry=retry_if_exception_type(MutationError),
            reraise=True,
        )
        def verify_last_batch(last_batch: Dict, results: List):
            """Check that all assets in the last batch have been sent to review."""
            try:
                project_id = results[0]["data"]["id"]
            except TypeError:
                return  # No assets have changed status
            asset_ids = last_batch["asset_ids"][-1:]  # check last asset of the batch only
            nb_assets_in_review = AssetQuery(self.auth.client).count(
                AssetWhere(
                    project_id=project_id,
                    asset_id_in=asset_ids,
                    status_in=["TO_REVIEW"],
                )
            )
            if len(asset_ids) != nb_assets_in_review:
                raise MutationError("Failed to send some assets to review")

        results = _mutate_from_paginated_call(
            self,
            properties_to_batch,
            generate_variables,
            GQL_ADD_ALL_LABELED_ASSETS_TO_REVIEW,
            last_batch_callback=verify_last_batch,
        )
        result = format_result("data", results[0])
        # unlike send_back_to_queue, the add_to_review mutation doesn't always return the project ID
        # it happens when no assets have been sent to review
        if isinstance(result, dict) and "id" in result:
            assets_in_review = AssetQuery(self.auth.client)(
                AssetWhere(project_id=result["id"], asset_id_in=asset_ids, status_in=["TO_REVIEW"]),
                ["id"],
                QueryOptions(disable_tqdm=True),
            )
            result["asset_ids"] = [asset["id"] for asset in assets_in_review]
            return result
        return result

    @typechecked
    def send_back_to_queue(
        self,
        asset_ids: Optional[List[str]] = None,
        external_ids: Optional[List[str]] = None,
        project_id: Optional[str] = None,
    ) -> Optional[Dict[str, Any]]:
        """Send assets back to queue.

        Args:
            asset_ids: List of internal IDs of assets to send back to queue.
            external_ids: List of external IDs of assets to send back to queue.
            project_id: The project ID. Only required if `external_ids` argument is provided.

        Returns:
            A dict object with the project `id` and the `asset_ids` of assets moved to queue.
            An error message if mutation failed.

        Examples:
            >>> kili.send_back_to_queue(
                    asset_ids=[
                        "ckg22d81r0jrg0885unmuswj8",
                        "ckg22d81s0jrh0885pdxfd03n",
                        ],
                )
        """
        if is_empty_list_with_warning(
            "send_back_to_queue", "asset_ids", asset_ids
        ) or is_empty_list_with_warning("send_back_to_queue", "external_ids", external_ids):
            return None

        asset_ids = get_asset_ids_or_throw_error(self.auth, asset_ids, external_ids, project_id)

        properties_to_batch: Dict[str, Optional[List[Any]]] = {"asset_ids": asset_ids}

        def generate_variables(batch):
            return {"where": {"idIn": batch["asset_ids"]}}

        @retry(
            wait=wait_exponential(multiplier=1, min=1, max=8),
            retry=retry_if_exception_type(MutationError),
            reraise=True,
        )
        def verify_last_batch(last_batch: Dict, results: List):
            """Check that all assets in the last batch have been sent back to queue."""
            asset_ids = last_batch["asset_ids"][-1:]  # check last asset of the batch only
            nb_assets_in_queue = AssetQuery(self.auth.client).count(
                AssetWhere(
                    project_id=results[0]["data"]["id"],
                    asset_id_in=asset_ids,
                    status_in=["ONGOING"],
                )
            )
            if len(asset_ids) != nb_assets_in_queue:
                raise MutationError("Failed to send some assets back to queue")

        results = _mutate_from_paginated_call(
            self,
            properties_to_batch,
            generate_variables,
            GQL_SEND_BACK_ASSETS_TO_QUEUE,
            last_batch_callback=verify_last_batch,
        )
        result = format_result("data", results[0])
        assets_in_queue = AssetQuery(self.auth.client)(
            AssetWhere(project_id=result["id"], asset_id_in=asset_ids, status_in=["ONGOING"]),
            ["id"],
            QueryOptions(disable_tqdm=True),
        )
        result["asset_ids"] = [asset["id"] for asset in assets_in_queue]
        return result

add_to_review(self, asset_ids=None, external_ids=None, project_id=None)

Add assets to review.

Warning

Assets without any label will be ignored.

Parameters:

Name Type Description Default
asset_ids Optional[List[str]]

The asset internal IDs to add to review.

None
external_ids Optional[List[str]]

The asset external IDs to add to review.

None
project_id Optional[str]

The project ID. Only required if external_ids argument is provided.

None

Returns:

Type Description
Optional[Dict[str, Any]]

A dict object with the project id and the asset_ids of assets moved to review. None if no assets have changed status (already had TO_REVIEW status for example). An error message if mutation failed.

Examples:

>>> kili.add_to_review(
        asset_ids=[
            "ckg22d81r0jrg0885unmuswj8",
            "ckg22d81s0jrh0885pdxfd03n",
        ],
    )
Source code in kili/entrypoints/mutations/asset/__init__.py
@typechecked
def add_to_review(
    self,
    asset_ids: Optional[List[str]] = None,
    external_ids: Optional[List[str]] = None,
    project_id: Optional[str] = None,
) -> Optional[Dict[str, Any]]:
    """Add assets to review.

    !!! warning
        Assets without any label will be ignored.

    Args:
        asset_ids: The asset internal IDs to add to review.
        external_ids: The asset external IDs to add to review.
        project_id: The project ID. Only required if `external_ids` argument is provided.

    Returns:
        A dict object with the project `id` and the `asset_ids` of assets moved to review.
        `None` if no assets have changed status (already had `TO_REVIEW` status for example).
        An error message if mutation failed.

    Examples:
        >>> kili.add_to_review(
                asset_ids=[
                    "ckg22d81r0jrg0885unmuswj8",
                    "ckg22d81s0jrh0885pdxfd03n",
                ],
            )
    """
    if is_empty_list_with_warning(
        "add_to_review", "asset_ids", asset_ids
    ) or is_empty_list_with_warning("add_to_review", "external_ids", external_ids):
        return None

    asset_ids = get_asset_ids_or_throw_error(self.auth, asset_ids, external_ids, project_id)

    properties_to_batch: Dict[str, Optional[List[Any]]] = {"asset_ids": asset_ids}

    def generate_variables(batch):
        return {"where": {"idIn": batch["asset_ids"]}}

    @retry(
        wait=wait_exponential(multiplier=1, min=1, max=8),
        retry=retry_if_exception_type(MutationError),
        reraise=True,
    )
    def verify_last_batch(last_batch: Dict, results: List):
        """Check that all assets in the last batch have been sent to review."""
        try:
            project_id = results[0]["data"]["id"]
        except TypeError:
            return  # No assets have changed status
        asset_ids = last_batch["asset_ids"][-1:]  # check last asset of the batch only
        nb_assets_in_review = AssetQuery(self.auth.client).count(
            AssetWhere(
                project_id=project_id,
                asset_id_in=asset_ids,
                status_in=["TO_REVIEW"],
            )
        )
        if len(asset_ids) != nb_assets_in_review:
            raise MutationError("Failed to send some assets to review")

    results = _mutate_from_paginated_call(
        self,
        properties_to_batch,
        generate_variables,
        GQL_ADD_ALL_LABELED_ASSETS_TO_REVIEW,
        last_batch_callback=verify_last_batch,
    )
    result = format_result("data", results[0])
    # unlike send_back_to_queue, the add_to_review mutation doesn't always return the project ID
    # it happens when no assets have been sent to review
    if isinstance(result, dict) and "id" in result:
        assets_in_review = AssetQuery(self.auth.client)(
            AssetWhere(project_id=result["id"], asset_id_in=asset_ids, status_in=["TO_REVIEW"]),
            ["id"],
            QueryOptions(disable_tqdm=True),
        )
        result["asset_ids"] = [asset["id"] for asset in assets_in_review]
        return result
    return result

append_many_to_dataset(self, project_id, content_array=None, external_id_array=None, id_array=None, is_honeypot_array=None, status_array=None, json_content_array=None, json_metadata_array=None, disable_tqdm=False, wait_until_availability=True)

Append assets to a project.

Parameters:

Name Type Description Default
project_id str

Identifier of the project

required
content_array Optional[List[str]]

List of elements added to the assets of the project Must not be None except if you provide json_content_array.

  • For a TEXT project, the content can be either raw text, or URLs to TEXT assets.
  • For an IMAGE / PDF project, the content can be either URLs or paths to existing images/pdf on your computer.
  • For a VIDEO project, the content can be either URLs pointing to videos hosted on a web server or paths to existing video files on your computer. If you want to import video from frames, look at the json_content section below.
  • For an VIDEO_LEGACY project, the content can be only be URLs
None
external_id_array Optional[List[str]]

List of external ids given to identify the assets. If None, random identifiers are created.

None
id_array Optional[List[str]]

Disabled parameter. Do not use.

None
is_honeypot_array Optional[List[bool]]

Whether to use the asset for honeypot

None
status_array Optional[List[str]]

By default, all imported assets are set to TODO. Other options: ONGOING, LABELED, REVIEWED.

None
json_content_array Optional[List[List[Union[dict, str]]]]

Useful for VIDEO or TEXT projects only.

  • For VIDEO projects, each element is a sequence of frames, i.e. a list of URLs to images or a list of paths to images.
  • For TEXT projects, each element is a json_content dict, formatted according to documentation on how to import rich-text assets
None
json_metadata_array Optional[List[dict]]

The metadata given to each asset should be stored in a json like dict with keys.

  • Add metadata visible on the asset with the following keys: imageUrl, text, url. Example for one asset: json_metadata_array = [{'imageUrl': '','text': '','url': ''}].
  • For VIDEO projects (and not VIDEO_LEGACY), you can specify a value with key 'processingParameters' to specify the sampling rate (default: 30). Example for one asset: json_metadata_array = [{'processingParameters': {'framesPlayedPerSecond': 10}}].
None
disable_tqdm bool

If True, the progress bar will be disabled

False
wait_until_availability bool

If True, the function will return once the assets are fully imported in Kili. If False, the function will return faster but the assets might not be fully processed by the server.

True

Returns:

Type Description
Optional[Dict[str, str]]

A result object which indicates if the mutation was successful, or an error message.

Examples:

>>> kili.append_many_to_dataset(
        project_id=project_id,
        content_array=['https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png'])

Recipe

  • For more detailed examples on how to import assets, see the recipe.
  • For more detailed examples on how to import text assets, see the recipe.
Source code in kili/entrypoints/mutations/asset/__init__.py
@typechecked
def append_many_to_dataset(
    self,
    project_id: str,
    content_array: Optional[List[str]] = None,
    external_id_array: Optional[List[str]] = None,
    id_array: Optional[List[str]] = None,
    is_honeypot_array: Optional[List[bool]] = None,
    status_array: Optional[List[str]] = None,
    json_content_array: Optional[List[List[Union[dict, str]]]] = None,
    json_metadata_array: Optional[List[dict]] = None,
    disable_tqdm: bool = False,
    wait_until_availability: bool = True,
) -> Optional[Dict[str, str]]:
    # pylint: disable=line-too-long
    """Append assets to a project.

    Args:
        project_id: Identifier of the project
        content_array: List of elements added to the assets of the project
            Must not be None except if you provide json_content_array.

            - For a `TEXT` project, the content can be either raw text, or URLs to TEXT assets.
            - For an `IMAGE` / `PDF` project, the content can be either URLs or paths to existing
                images/pdf on your computer.
            - For a VIDEO project, the content can be either URLs pointing to videos hosted on a web server or paths to
            existing video files on your computer. If you want to import video from frames, look at the json_content
            section below.
            - For an `VIDEO_LEGACY` project, the content can be only be URLs
        external_id_array: List of external ids given to identify the assets.
            If None, random identifiers are created.
        id_array: Disabled parameter. Do not use.
        is_honeypot_array:  Whether to use the asset for honeypot
        status_array: By default, all imported assets are set to `TODO`. Other options:
            `ONGOING`, `LABELED`, `REVIEWED`.
        json_content_array: Useful for `VIDEO` or `TEXT` projects only.

            - For `VIDEO` projects, each element is a sequence of frames, i.e. a
                list of URLs to images or a list of paths to images.
            - For `TEXT` projects, each element is a json_content dict,
                formatted according to documentation [on how to import
            rich-text assets](https://github.com/kili-technology/kili-python-sdk/blob/master/recipes/import_text_assets.ipynb)
        json_metadata_array: The metadata given to each asset should be stored in a json like dict with keys.

            - Add metadata visible on the asset with the following keys: `imageUrl`, `text`, `url`.
                Example for one asset: `json_metadata_array = [{'imageUrl': '','text': '','url': ''}]`.
            - For VIDEO projects (and not VIDEO_LEGACY), you can specify a value with key 'processingParameters' to specify the sampling rate (default: 30).
                Example for one asset: `json_metadata_array = [{'processingParameters': {'framesPlayedPerSecond': 10}}]`.
        disable_tqdm: If `True`, the progress bar will be disabled
        wait_until_availability: If `True`, the function will return once the assets are fully imported in Kili.
            If `False`, the function will return faster but the assets might not be fully processed by the server.

    Returns:
        A result object which indicates if the mutation was successful, or an error message.

    Examples:
        >>> kili.append_many_to_dataset(
                project_id=project_id,
                content_array=['https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png'])

    !!! example "Recipe"
        - For more detailed examples on how to import assets,
            see [the recipe](https://docs.kili-technology.com/recipes/importing-data).
        - For more detailed examples on how to import text assets,
            see [the recipe](https://github.com/kili-technology/kili-python-sdk/blob/master/recipes/import_text_assets.ipynb).
    """
    if is_empty_list_with_warning(
        "append_many_to_dataset", "content_array", content_array
    ) or is_empty_list_with_warning(
        "append_many_to_dataset", "json_content_array", json_content_array
    ):
        return None

    if status_array is not None:
        warnings.warn(
            (
                "status_array is deprecated, asset status is automatically computed based on"
                " its labels and cannot be overwritten."
            ),
            DeprecationWarning,
            stacklevel=1,
        )

    if content_array is None and json_content_array is None:
        raise ValueError("Variables content_array and json_content_array cannot be both None.")

    nb_data = (
        len(content_array)
        if content_array is not None
        else len(json_content_array)  # type:ignore
    )

    field_mapping = {
        "content": content_array,
        "json_content": json_content_array,
        "external_id": external_id_array,
        "id": id_array,
        "status": status_array,
        "json_metadata": json_metadata_array,
        "is_honeypot": is_honeypot_array,
    }
    assets = [{}] * nb_data
    for key, value in field_mapping.items():
        if value is not None:
            assets = [{**assets[i], key: value[i]} for i in range(nb_data)]
    result = import_assets(
        self.auth,
        project_id=project_id,
        assets=assets,
        disable_tqdm=disable_tqdm,
        verify=wait_until_availability,
    )
    return result

change_asset_external_ids(self, new_external_ids, asset_ids=None, external_ids=None, project_id=None)

Update the external IDs of one or more assets.

Parameters:

Name Type Description Default
new_external_ids List[str]

The new external IDs of the assets.

required
asset_ids Optional[List[str]]

The asset IDs to modify.

None
external_ids Optional[List[str]]

The external asset IDs to modify (if asset_ids is not already provided).

None
project_id Optional[str]

The project ID. Only required if external_ids argument is provided.

None

Returns:

Type Description
List[Dict]

A result object which indicates if the mutation was successful, or an error message.

Examples:

>>> kili.change_asset_external_ids(
        new_external_ids=["asset1", "asset2"],
        asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
    )
Source code in kili/entrypoints/mutations/asset/__init__.py
@typechecked
def change_asset_external_ids(
    self,
    new_external_ids: List[str],
    asset_ids: Optional[List[str]] = None,
    external_ids: Optional[List[str]] = None,
    project_id: Optional[str] = None,
) -> List[Dict]:
    """Update the external IDs of one or more assets.

    Args:
        new_external_ids: The new external IDs of the assets.
        asset_ids: The asset IDs to modify.
        external_ids: The external asset IDs to modify (if `asset_ids` is not already provided).
        project_id: The project ID. Only required if `external_ids` argument is provided.

    Returns:
        A result object which indicates if the mutation was successful,
            or an error message.

    Examples:
        >>> kili.change_asset_external_ids(
                new_external_ids=["asset1", "asset2"],
                asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
            )
    """
    if is_empty_list_with_warning(
        "change_asset_external_ids", "new_external_ids", new_external_ids
    ):
        return []

    asset_ids = get_asset_ids_or_throw_error(self.auth, asset_ids, external_ids, project_id)

    parameters = {
        "asset_ids": asset_ids,
        "new_external_ids": new_external_ids,
        "json_metadatas": None,
        "to_be_labeled_by_array": None,
    }
    properties_to_batch = process_update_properties_in_assets_parameters(parameters)

    def generate_variables(batch: Dict) -> Dict:
        data = {
            "externalId": batch["new_external_ids"],
            "jsonMetadata": batch["json_metadatas"],
            "toBeLabeledBy": batch["to_be_labeled_by_array"],
            "shouldResetToBeLabeledBy": batch["should_reset_to_be_labeled_by_array"],
        }
        data_array = [dict(zip(data, t)) for t in zip(*data.values())]
        return {
            "whereArray": [{"id": asset_id} for asset_id in batch["asset_ids"]],
            "dataArray": data_array,
        }

    results = _mutate_from_paginated_call(
        self,
        properties_to_batch,
        generate_variables,
        GQL_UPDATE_PROPERTIES_IN_ASSETS,
    )
    formated_results = [format_result("data", result, Asset) for result in results]
    return [item for batch_list in formated_results for item in batch_list]

delete_many_from_dataset(self, asset_ids=None, external_ids=None, project_id=None)

Delete assets from a project.

Parameters:

Name Type Description Default
asset_ids Optional[List[str]]

The list of asset internal IDs to delete.

None
external_ids Optional[List[str]]

The list of asset external IDs to delete.

None
project_id Optional[str]

The project ID. Only required if external_ids argument is provided.

None

Returns:

Type Description
Asset

A result object which indicates if the mutation was successful, or an error message.

Source code in kili/entrypoints/mutations/asset/__init__.py
@typechecked
def delete_many_from_dataset(
    self,
    asset_ids: Optional[List[str]] = None,
    external_ids: Optional[List[str]] = None,
    project_id: Optional[str] = None,
) -> Asset:
    """Delete assets from a project.

    Args:
        asset_ids: The list of asset internal IDs to delete.
        external_ids: The list of asset external IDs to delete.
        project_id: The project ID. Only required if `external_ids` argument is provided.

    Returns:
        A result object which indicates if the mutation was successful,
            or an error message.
    """
    if is_empty_list_with_warning(
        "delete_many_from_dataset", "asset_ids", asset_ids
    ) or is_empty_list_with_warning("delete_many_from_dataset", "external_ids", external_ids):
        return Asset()

    asset_ids = get_asset_ids_or_throw_error(self.auth, asset_ids, external_ids, project_id)

    properties_to_batch: Dict[str, Optional[List[Any]]] = {"asset_ids": asset_ids}

    def generate_variables(batch):
        return {"where": {"idIn": batch["asset_ids"]}}

    @retry(
        wait=wait_exponential(multiplier=1, min=1, max=8),
        retry=retry_if_exception_type(MutationError),
        reraise=True,
    )
    def verify_last_batch(last_batch: Dict, results: List):
        """Check that all assets in the last batch have been deleted."""
        asset_ids = last_batch["asset_ids"][-1:]  # check last asset of the batch only
        nb_assets_in_kili = AssetQuery(self.auth.client).count(
            AssetWhere(
                project_id=results[0]["data"]["id"],
                asset_id_in=asset_ids,
            )
        )
        if nb_assets_in_kili > 0:
            raise MutationError("Failed to delete some assets.")

    results = _mutate_from_paginated_call(
        self,
        properties_to_batch,
        generate_variables,
        GQL_DELETE_MANY_FROM_DATASET,
        last_batch_callback=verify_last_batch,
    )
    return format_result("data", results[0], Asset)

send_back_to_queue(self, asset_ids=None, external_ids=None, project_id=None)

Send assets back to queue.

Parameters:

Name Type Description Default
asset_ids Optional[List[str]]

List of internal IDs of assets to send back to queue.

None
external_ids Optional[List[str]]

List of external IDs of assets to send back to queue.

None
project_id Optional[str]

The project ID. Only required if external_ids argument is provided.

None

Returns:

Type Description
Optional[Dict[str, Any]]

A dict object with the project id and the asset_ids of assets moved to queue. An error message if mutation failed.

Examples:

>>> kili.send_back_to_queue(
        asset_ids=[
            "ckg22d81r0jrg0885unmuswj8",
            "ckg22d81s0jrh0885pdxfd03n",
            ],
    )
Source code in kili/entrypoints/mutations/asset/__init__.py
@typechecked
def send_back_to_queue(
    self,
    asset_ids: Optional[List[str]] = None,
    external_ids: Optional[List[str]] = None,
    project_id: Optional[str] = None,
) -> Optional[Dict[str, Any]]:
    """Send assets back to queue.

    Args:
        asset_ids: List of internal IDs of assets to send back to queue.
        external_ids: List of external IDs of assets to send back to queue.
        project_id: The project ID. Only required if `external_ids` argument is provided.

    Returns:
        A dict object with the project `id` and the `asset_ids` of assets moved to queue.
        An error message if mutation failed.

    Examples:
        >>> kili.send_back_to_queue(
                asset_ids=[
                    "ckg22d81r0jrg0885unmuswj8",
                    "ckg22d81s0jrh0885pdxfd03n",
                    ],
            )
    """
    if is_empty_list_with_warning(
        "send_back_to_queue", "asset_ids", asset_ids
    ) or is_empty_list_with_warning("send_back_to_queue", "external_ids", external_ids):
        return None

    asset_ids = get_asset_ids_or_throw_error(self.auth, asset_ids, external_ids, project_id)

    properties_to_batch: Dict[str, Optional[List[Any]]] = {"asset_ids": asset_ids}

    def generate_variables(batch):
        return {"where": {"idIn": batch["asset_ids"]}}

    @retry(
        wait=wait_exponential(multiplier=1, min=1, max=8),
        retry=retry_if_exception_type(MutationError),
        reraise=True,
    )
    def verify_last_batch(last_batch: Dict, results: List):
        """Check that all assets in the last batch have been sent back to queue."""
        asset_ids = last_batch["asset_ids"][-1:]  # check last asset of the batch only
        nb_assets_in_queue = AssetQuery(self.auth.client).count(
            AssetWhere(
                project_id=results[0]["data"]["id"],
                asset_id_in=asset_ids,
                status_in=["ONGOING"],
            )
        )
        if len(asset_ids) != nb_assets_in_queue:
            raise MutationError("Failed to send some assets back to queue")

    results = _mutate_from_paginated_call(
        self,
        properties_to_batch,
        generate_variables,
        GQL_SEND_BACK_ASSETS_TO_QUEUE,
        last_batch_callback=verify_last_batch,
    )
    result = format_result("data", results[0])
    assets_in_queue = AssetQuery(self.auth.client)(
        AssetWhere(project_id=result["id"], asset_id_in=asset_ids, status_in=["ONGOING"]),
        ["id"],
        QueryOptions(disable_tqdm=True),
    )
    result["asset_ids"] = [asset["id"] for asset in assets_in_queue]
    return result

update_properties_in_assets(self, asset_ids=None, external_ids=None, priorities=None, json_metadatas=None, consensus_marks=None, honeypot_marks=None, to_be_labeled_by_array=None, contents=None, json_contents=None, status_array=None, is_used_for_consensus_array=None, is_honeypot_array=None, project_id=None)

Update the properties of one or more assets.

Parameters:

Name Type Description Default
asset_ids Optional[List[str]]

The internal asset IDs to modify.

None
external_ids Optional[List[str]]

The external asset IDs to modify (if asset_ids is not already provided).

None
priorities Optional[List[int]]

You can change the priority of the assets. By default, all assets have a priority of 0.

None
json_metadatas Optional[List[Union[dict, str]]]

The metadata given to an asset should be stored in a json like dict with keys imageUrl, text, url: json_metadata = {'imageUrl': '','text': '','url': ''}

None
consensus_marks Optional[List[float]]

Should be between 0 and 1.

None
honeypot_marks Optional[List[float]]

Should be between 0 and 1.

None
to_be_labeled_by_array Optional[List[List[str]]]

If given, each element of the list should contain the emails of the labelers authorized to label the asset.

None
contents Optional[List[str]]
  • For a NLP project, the content can be directly in text format.
  • For an Image / Video / Pdf project, the content must be hosted on a web server, and you point Kili to your data by giving the URLs.
None
json_contents Optional[List[str]]
  • For a NLP project, the json_content is a text formatted using RichText.
  • For a Video project, thejson_content is a json containg urls pointing to each frame of the video.
None
status_array Optional[List[str]]

Each element should be in TODO, ONGOING, LABELED, TO_REVIEW, REVIEWED.

None
is_used_for_consensus_array Optional[List[bool]]

Whether to use the asset to compute consensus kpis or not.

None
is_honeypot_array Optional[List[bool]]

Whether to use the asset for honeypot.

None
project_id Optional[str]

The project ID. Only required if external_ids argument is provided.

None

Returns:

Type Description
List[Dict]

A result object which indicates if the mutation was successful, or an error message.

Examples:

>>> kili.update_properties_in_assets(
        asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
        consensus_marks=[1, 0.7],
        contents=[None, 'https://to/second/asset.png'],
        honeypot_marks=[0.8, 0.5],
        is_honeypot_array=[True, True],
        is_used_for_consensus_array=[True, False],
        priorities=[None, 2],
        status_array=['LABELED', 'REVIEWED'],
        to_be_labeled_by_array=[['test+pierre@kili-technology.com'], None],
    )
Source code in kili/entrypoints/mutations/asset/__init__.py
@typechecked
# pylint: disable=unused-argument
def update_properties_in_assets(
    self,
    asset_ids: Optional[List[str]] = None,
    external_ids: Optional[List[str]] = None,
    priorities: Optional[List[int]] = None,
    json_metadatas: Optional[List[Union[dict, str]]] = None,
    consensus_marks: Optional[List[float]] = None,
    honeypot_marks: Optional[List[float]] = None,
    to_be_labeled_by_array: Optional[List[List[str]]] = None,
    contents: Optional[List[str]] = None,
    json_contents: Optional[List[str]] = None,
    status_array: Optional[List[str]] = None,
    is_used_for_consensus_array: Optional[List[bool]] = None,
    is_honeypot_array: Optional[List[bool]] = None,
    project_id: Optional[str] = None,
) -> List[Dict]:
    """Update the properties of one or more assets.

    Args:
        asset_ids: The internal asset IDs to modify.
        external_ids: The external asset IDs to modify (if `asset_ids` is not already provided).
        priorities: You can change the priority of the assets.
            By default, all assets have a priority of 0.
        json_metadatas: The metadata given to an asset should be stored
            in a json like dict with keys `imageUrl`, `text`, `url`:
            `json_metadata = {'imageUrl': '','text': '','url': ''}`
        consensus_marks: Should be between 0 and 1.
        honeypot_marks: Should be between 0 and 1.
        to_be_labeled_by_array: If given, each element of the list should contain the emails of
            the labelers authorized to label the asset.
        contents: - For a NLP project, the content can be directly in text format.
            - For an Image / Video / Pdf project, the content must be hosted on a web server,
            and you point Kili to your data by giving the URLs.
        json_contents: - For a NLP project, the `json_content`
            is a text formatted using RichText.
            - For a Video project, the`json_content` is a json containg urls pointing
                to each frame of the video.
        status_array: Each element should be in `TODO`, `ONGOING`, `LABELED`,
            `TO_REVIEW`, `REVIEWED`.
        is_used_for_consensus_array: Whether to use the asset to compute consensus kpis or not.
        is_honeypot_array: Whether to use the asset for honeypot.
        project_id: The project ID. Only required if `external_ids` argument is provided.

    Returns:
        A result object which indicates if the mutation was successful,
            or an error message.

    Examples:
        >>> kili.update_properties_in_assets(
                asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
                consensus_marks=[1, 0.7],
                contents=[None, 'https://to/second/asset.png'],
                honeypot_marks=[0.8, 0.5],
                is_honeypot_array=[True, True],
                is_used_for_consensus_array=[True, False],
                priorities=[None, 2],
                status_array=['LABELED', 'REVIEWED'],
                to_be_labeled_by_array=[['test+pierre@kili-technology.com'], None],
            )
    """
    if is_empty_list_with_warning(
        "update_properties_in_assets", "asset_ids", asset_ids
    ) or is_empty_list_with_warning(
        "update_properties_in_assets", "external_ids", external_ids
    ):
        return []

    if status_array is not None:
        warnings.warn(
            (
                "status_array is deprecated, asset status is automatically computed based on"
                " its labels and cannot be overwritten."
            ),
            DeprecationWarning,
            stacklevel=1,
        )

    if asset_ids is not None and external_ids is not None:
        warnings.warn(
            (
                "The use of `external_ids` argument has changed. It is now used to identify"
                " which properties of which assets to update. Please use"
                " `kili.change_asset_external_ids()` method instead to change asset external"
                " IDs."
            ),
            DeprecationWarning,
            stacklevel=1,
        )
        raise MissingArgumentError("Please provide either `asset_ids` or `external_ids`.")

    asset_ids = get_asset_ids_or_throw_error(self.auth, asset_ids, external_ids, project_id)

    saved_args = locals()
    parameters = {
        k: v
        for (k, v) in saved_args.items()
        if k
        in [
            "asset_ids",
            "priorities",
            "json_metadatas",
            "consensus_marks",
            "honeypot_marks",
            "to_be_labeled_by_array",
            "contents",
            "json_contents",
            "status_array",
            "is_used_for_consensus_array",
            "is_honeypot_array",
        ]
    }
    properties_to_batch = process_update_properties_in_assets_parameters(parameters)

    def generate_variables(batch: Dict) -> Dict:
        data = {
            "priority": batch["priorities"],
            "jsonMetadata": batch["json_metadatas"],
            "consensusMark": batch["consensus_marks"],
            "honeypotMark": batch["honeypot_marks"],
            "toBeLabeledBy": batch["to_be_labeled_by_array"],
            "shouldResetToBeLabeledBy": batch["should_reset_to_be_labeled_by_array"],
            "content": batch["contents"],
            "jsonContent": batch["json_contents"],
            "status": batch["status_array"],
            "isUsedForConsensus": batch["is_used_for_consensus_array"],
            "isHoneypot": batch["is_honeypot_array"],
        }
        data_array = [dict(zip(data, t)) for t in zip(*data.values())]
        return {
            "whereArray": [{"id": asset_id} for asset_id in batch["asset_ids"]],
            "dataArray": data_array,
        }

    results = _mutate_from_paginated_call(
        self,
        properties_to_batch,
        generate_variables,
        GQL_UPDATE_PROPERTIES_IN_ASSETS,
    )
    formated_results = [format_result("data", result, Asset) for result in results]
    return [item for batch_list in formated_results for item in batch_list]