Asset module
Queries
Set of Asset queries
Source code in kili/queries/asset/__init__.py
          class QueriesAsset:
    """
    Set of Asset queries
    """
    # pylint: disable=too-many-arguments,too-many-locals
    def __init__(self, auth):
        """Initialize the subclass.
        Args:
            auth: KiliAuth object
        """
        self.auth = auth
    # pylint: disable=dangerous-default-value
    @typechecked
    def assets(
        self,
        project_id: str,
        asset_id: Optional[str] = None,
        skip: int = 0,
        fields: List[str] = [
            "content",
            "createdAt",
            "externalId",
            "id",
            "isHoneypot",
            "jsonMetadata",
            "labels.author.id",
            "labels.author.email",
            "labels.createdAt",
            "labels.id",
            "labels.jsonResponse",
            "skipped",
            "status",
        ],
        asset_id_in: Optional[List[str]] = None,
        consensus_mark_gt: Optional[float] = None,
        consensus_mark_lt: Optional[float] = None,
        disable_tqdm: bool = False,
        external_id_contains: Optional[List[str]] = None,
        first: Optional[int] = None,
        format: Optional[str] = None,  # pylint: disable=redefined-builtin
        honeypot_mark_gt: Optional[float] = None,
        honeypot_mark_lt: Optional[float] = None,
        label_author_in: Optional[List[str]] = None,
        label_consensus_mark_gt: Optional[float] = None,
        label_consensus_mark_lt: Optional[float] = None,
        label_created_at: Optional[str] = None,
        label_created_at_gt: Optional[str] = None,
        label_created_at_lt: Optional[str] = None,
        label_honeypot_mark_gt: Optional[float] = None,
        label_honeypot_mark_lt: Optional[float] = None,
        label_type_in: Optional[List[str]] = None,
        metadata_where: Optional[dict] = None,
        skipped: Optional[bool] = None,
        status_in: Optional[List[str]] = None,
        updated_at_gte: Optional[str] = None,
        updated_at_lte: Optional[str] = None,
        as_generator: bool = False,
        label_category_search: Optional[str] = None,
        download_media: bool = False,
        local_media_dir: Optional[str] = None,
    ) -> Union[Iterable[Dict], pd.DataFrame]:
        # pylint: disable=line-too-long
        """Get an asset list, an asset generator or a pandas DataFrame that match a set of constraints.
        Args:
            project_id: Identifier of the project.
            asset_id: Identifier of the asset to retrieve.
            asset_id_in: A list of the IDs of the assets to retrieve.
            skip: Number of assets to skip (they are ordered by their date of creation, first to last).
            fields: All the fields to request among the possible fields for the assets.
                    See [the documentation](https://docs.kili-technology.com/reference/graphql-api#asset) for all possible fields.
            first: Maximum number of assets to return.
            consensus_mark_gt: Minimum amount of consensus for the asset.
            consensus_mark_lt: Maximum amount of consensus for the asset.
            external_id_contains: Returned assets have an external id that belongs to that list, if given.
            metadata_where: Filters by the values of the metadata of the asset.
            honeypot_mark_gt: Minimum amount of honeypot for the asset.
            honeypot_mark_lt : Maximum amount of honeypot for the asset.
            status_in: Returned assets should have a status that belongs to that list, if given.
                Possible choices: `TODO`, `ONGOING`, `LABELED`, `TO_REVIEW` or `REVIEWED`
            label_type_in: Returned assets should have a label whose type belongs to that list, if given.
            label_author_in: Returned assets should have a label whose status belongs to that list, if given.
            label_consensus_mark_gt: Returned assets should have a label whose consensus is greater than this number.
            label_consensus_mark_lt: Returned assets should have a label whose consensus is lower than this number.
            label_created_at: Returned assets should have a label whose creation date is equal to this date.
            label_created_at_gt: Returned assets should have a label whose creation date is greater than this date.
            label_created_at_lt: Returned assets should have a label whose creation date is lower than this date.
            label_honeypot_mark_gt: Returned assets should have a label whose honeypot is greater than this number
            label_honeypot_mark_lt: Returned assets should have a label whose honeypot is lower than this number
            skipped: Returned assets should be skipped
            updated_at_gte: Returned assets should have a label whose update date is greated or equal to this date.
            updated_at_lte: Returned assets should have a label whose update date is lower or equal to this date.
            format: If equal to 'pandas', returns a pandas DataFrame
            disable_tqdm: If `True`, the progress bar will be disabled
            as_generator: If `True`, a generator on the assets is returned.
            label_category_search: Returned assets should have a label that follows this category search query.
            download_media: Tell is the media have to be downloaded or not.
            local_media_dir: Directory where the media are downloaded if `download_media` is True.
        !!! info "Dates format"
            Date strings should have format: "YYYY-MM-DD"
        Returns:
            A result object which contains the query if it was successful,
                or an error message.
        Example:
            ```
            # returns the assets list of the project
            >>> kili.assets(project_id)
            >>> kili.assets(project_id, asset_id=asset_id)
            # returns a generator of the project assets
            >>> kili.assets(project_id, as_generator=True)
            ```
        !!! example "How to filter based on Metadata"
            - `metadata_where = {key1: "value1"}` to filter on assets whose metadata
                have key "key1" with value "value1"
            - `metadata_where = {key1: ["value1", "value2"]}` to filter on assets whose metadata
                have key "key1" with value "value1" or value "value2
            - `metadata_where = {key2: [2, 10]}` to filter on assets whose metadata
                have key "key2" with a value between 2 and 10.
        !!! example "How to filter based on label categories"
            The search query is composed of logical expressions following this format:
                [job_name].[category_name].count [comparaison_operator] [value]
            where:
            - `[job_name]` is the name of the job in the interface
            - `[category_name]` is the name of the category in the interface for this job
            - `[comparaison_operator]` can be one of: [`==`, `>=`, `<=`, `<`, `>`]
            - `[value]` is an integer that represents the count of such objects of the given category in the label
            These operations can be separated by OR and AND operators
            Example:
                label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0`
                label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0 OR JOB_NER.CATEGORY_B.count > 0`
                label_category_search = `(JOB_CLASSIF.CATEGORY_A.count == 1 OR JOB_NER.CATEGORY_B.count > 0) AND JOB_BBOX.CATEGORY_C.count > 10`
        """
        if format == "pandas" and as_generator:
            raise ValueError(
                'Argument values as_generator==True and format=="pandas" are not compatible.'
            )
        if label_category_search:
            validate_category_search_query(label_category_search)
        where = AssetWhere(
            project_id=project_id,
            asset_id=asset_id,
            asset_id_in=asset_id_in,
            consensus_mark_gt=consensus_mark_gt,
            consensus_mark_lt=consensus_mark_lt,
            external_id_contains=external_id_contains,
            honeypot_mark_gt=honeypot_mark_gt,
            honeypot_mark_lt=honeypot_mark_lt,
            label_author_in=label_author_in,
            label_consensus_mark_gt=label_consensus_mark_gt,
            label_consensus_mark_lt=label_consensus_mark_lt,
            label_created_at=label_created_at,
            label_created_at_gt=label_created_at_gt,
            label_created_at_lt=label_created_at_lt,
            label_honeypot_mark_gt=label_honeypot_mark_gt,
            label_honeypot_mark_lt=label_honeypot_mark_lt,
            label_type_in=label_type_in,
            metadata_where=metadata_where,
            skipped=skipped,
            status_in=status_in,
            updated_at_gte=updated_at_gte,
            updated_at_lte=updated_at_lte,
            label_category_search=label_category_search,
        )
        options = QueryOptions(disable_tqdm, first, skip, as_generator)
        post_call_function = get_download_assets_function(
            self, download_media, fields, project_id, local_media_dir
        )
        assets = AssetQuery(self.auth.client)(where, fields, options, post_call_function)
        if format == "pandas":
            return pd.DataFrame(assets)
        return assets
    @typechecked
    def count_assets(
        self,
        project_id: str,
        asset_id: Optional[str] = None,
        asset_id_in: Optional[List[str]] = None,
        external_id_contains: Optional[List[str]] = None,
        metadata_where: Optional[dict] = None,
        status_in: Optional[List[str]] = None,
        consensus_mark_gt: Optional[float] = None,
        consensus_mark_lt: Optional[float] = None,
        honeypot_mark_gt: Optional[float] = None,
        honeypot_mark_lt: Optional[float] = None,
        label_type_in: Optional[List[str]] = None,
        label_author_in: Optional[List[str]] = None,
        label_consensus_mark_gt: Optional[float] = None,
        label_consensus_mark_lt: Optional[float] = None,
        label_created_at: Optional[str] = None,
        label_created_at_gt: Optional[str] = None,
        label_created_at_lt: Optional[str] = None,
        label_honeypot_mark_gt: Optional[float] = None,
        label_honeypot_mark_lt: Optional[float] = None,
        skipped: Optional[bool] = None,
        updated_at_gte: Optional[str] = None,
        updated_at_lte: Optional[str] = None,
        label_category_search: Optional[str] = None,
    ) -> int:
        """Count and return the number of assets with the given constraints.
        Parameters beginning with 'label_' apply to labels, others apply to assets.
        Args:
            project_id: Identifier of the project
            asset_id: The unique id of the asset to retrieve.
            asset_id_in: A list of the ids of the assets to retrieve.
            external_id_contains: Returned assets should have an external id
                that belongs to that list, if given.
            metadata_where: Filters by the values of the metadata of the asset.
            status_in: Returned assets should have a status that belongs to that list, if given.
                Possible choices: `TODO`, `ONGOING`, `LABELED` or `REVIEWED`
            consensus_mark_gt: Minimum amount of consensus for the asset.
            consensus_mark_lt: Maximum amount of consensus for the asset.
            honeypot_mark_gt: Minimum amount of honeypot for the asset.
            honeypot_mark_lt: Maximum amount of consensus for the asset.
            label_type_in: Returned assets should have a label
                whose type belongs to that list, if given.
            label_author_in: Returned assets should have a label
                whose status belongs to that list, if given.
            label_consensus_mark_gt: Returned assets should have a label
                whose consensus is greater than this number.
            label_consensus_mark_lt: Returned assets should have a label
                whose consensus is lower than this number.
            label_created_at: Returned assets should have a label
                whose creation date is equal to this date.
            label_created_at_gt: Returned assets should have a label
                whose creation date is greater than this date.
            label_created_at_lt: Returned assets should have a label
                whose creation date is lower than this date.
            label_honeypot_mark_gt: Returned assets should have a label
                whose honeypot is greater than this number.
            label_honeypot_mark_lt: Returned assets should have a label
                whose honeypot is lower than this number.
            skipped: Returned assets should be skipped
            updated_at_gte: Returned assets should have a label
                whose update date is greated or equal to this date.
            updated_at_lte: Returned assets should have a label
                whose update date is lower or equal to this date.
        !!! info "Dates format"
            Date strings should have format: "YYYY-MM-DD"
        Returns:
            A result object which contains the query if it was successful,
                or an error message.
        Examples:
            >>> kili.count_assets(project_id=project_id)
            250
            >>> kili.count_assets(asset_id=asset_id)
            1
        !!! example "How to filter based on Metadata"
            - `metadata_where = {key1: "value1"}` to filter on assets whose metadata
                have key "key1" with value "value1"
            - `metadata_where = {key1: ["value1", "value2"]}` to filter on assets whose metadata
                have key "key1" with value "value1" or value "value2
            - `metadata_where = {key2: [2, 10]}` to filter on assets whose metadata
                have key "key2" with a value between 2 and 10.
        """
        if label_category_search:
            validate_category_search_query(label_category_search)
        where = AssetWhere(
            project_id=project_id,
            asset_id=asset_id,
            asset_id_in=asset_id_in,
            consensus_mark_gt=consensus_mark_gt,
            consensus_mark_lt=consensus_mark_lt,
            external_id_contains=external_id_contains,
            honeypot_mark_gt=honeypot_mark_gt,
            honeypot_mark_lt=honeypot_mark_lt,
            label_author_in=label_author_in,
            label_consensus_mark_gt=label_consensus_mark_gt,
            label_consensus_mark_lt=label_consensus_mark_lt,
            label_created_at=label_created_at,
            label_created_at_gt=label_created_at_gt,
            label_created_at_lt=label_created_at_lt,
            label_honeypot_mark_gt=label_honeypot_mark_gt,
            label_honeypot_mark_lt=label_honeypot_mark_lt,
            label_type_in=label_type_in,
            metadata_where=metadata_where,
            skipped=skipped,
            status_in=status_in,
            updated_at_gte=updated_at_gte,
            updated_at_lte=updated_at_lte,
            label_category_search=label_category_search,
        )
        return AssetQuery(self.auth.client).count(where)
assets(self, project_id, asset_id=None, skip=0, fields=['content', 'createdAt', 'externalId', 'id', 'isHoneypot', 'jsonMetadata', 'labels.author.id', 'labels.author.email', 'labels.createdAt', 'labels.id', 'labels.jsonResponse', 'skipped', 'status'], asset_id_in=None, consensus_mark_gt=None, consensus_mark_lt=None, disable_tqdm=False, external_id_contains=None, first=None, format=None, honeypot_mark_gt=None, honeypot_mark_lt=None, label_author_in=None, label_consensus_mark_gt=None, label_consensus_mark_lt=None, label_created_at=None, label_created_at_gt=None, label_created_at_lt=None, label_honeypot_mark_gt=None, label_honeypot_mark_lt=None, label_type_in=None, metadata_where=None, skipped=None, status_in=None, updated_at_gte=None, updated_at_lte=None, as_generator=False, label_category_search=None, download_media=False, local_media_dir=None)
    Get an asset list, an asset generator or a pandas DataFrame that match a set of constraints.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| project_id | str | Identifier of the project. | required | 
| asset_id | Optional[str] | Identifier of the asset to retrieve. | None | 
| asset_id_in | Optional[List[str]] | A list of the IDs of the assets to retrieve. | None | 
| skip | int | Number of assets to skip (they are ordered by their date of creation, first to last). | 0 | 
| fields | List[str] | All the fields to request among the possible fields for the assets. See the documentation for all possible fields. | ['content', 'createdAt', 'externalId', 'id', 'isHoneypot', 'jsonMetadata', 'labels.author.id', 'labels.author.email', 'labels.createdAt', 'labels.id', 'labels.jsonResponse', 'skipped', 'status'] | 
| first | Optional[int] | Maximum number of assets to return. | None | 
| consensus_mark_gt | Optional[float] | Minimum amount of consensus for the asset. | None | 
| consensus_mark_lt | Optional[float] | Maximum amount of consensus for the asset. | None | 
| external_id_contains | Optional[List[str]] | Returned assets have an external id that belongs to that list, if given. | None | 
| metadata_where | Optional[dict] | Filters by the values of the metadata of the asset. | None | 
| honeypot_mark_gt | Optional[float] | Minimum amount of honeypot for the asset. | None | 
| honeypot_mark_lt | Maximum amount of honeypot for the asset. | None | |
| status_in | Optional[List[str]] | Returned assets should have a status that belongs to that list, if given.
Possible choices:  | None | 
| label_type_in | Optional[List[str]] | Returned assets should have a label whose type belongs to that list, if given. | None | 
| label_author_in | Optional[List[str]] | Returned assets should have a label whose status belongs to that list, if given. | None | 
| label_consensus_mark_gt | Optional[float] | Returned assets should have a label whose consensus is greater than this number. | None | 
| label_consensus_mark_lt | Optional[float] | Returned assets should have a label whose consensus is lower than this number. | None | 
| label_created_at | Optional[str] | Returned assets should have a label whose creation date is equal to this date. | None | 
| label_created_at_gt | Optional[str] | Returned assets should have a label whose creation date is greater than this date. | None | 
| label_created_at_lt | Optional[str] | Returned assets should have a label whose creation date is lower than this date. | None | 
| label_honeypot_mark_gt | Optional[float] | Returned assets should have a label whose honeypot is greater than this number | None | 
| label_honeypot_mark_lt | Optional[float] | Returned assets should have a label whose honeypot is lower than this number | None | 
| skipped | Optional[bool] | Returned assets should be skipped | None | 
| updated_at_gte | Optional[str] | Returned assets should have a label whose update date is greated or equal to this date. | None | 
| updated_at_lte | Optional[str] | Returned assets should have a label whose update date is lower or equal to this date. | None | 
| format | Optional[str] | If equal to 'pandas', returns a pandas DataFrame | None | 
| disable_tqdm | bool | If  | False | 
| as_generator | bool | If  | False | 
| label_category_search | Optional[str] | Returned assets should have a label that follows this category search query. | None | 
| download_media | bool | Tell is the media have to be downloaded or not. | False | 
| local_media_dir | Optional[str] | Directory where the media are downloaded if  | None | 
Dates format
Date strings should have format: "YYYY-MM-DD"
Returns:
| Type | Description | 
|---|---|
| Union[Iterable[Dict], pandas.core.frame.DataFrame] | A result object which contains the query if it was successful, or an error message. | 
Examples:
# returns the assets list of the project
>>> kili.assets(project_id)
>>> kili.assets(project_id, asset_id=asset_id)
# returns a generator of the project assets
>>> kili.assets(project_id, as_generator=True)
How to filter based on Metadata
- metadata_where = {key1: "value1"}to filter on assets whose metadata have key "key1" with value "value1"
- metadata_where = {key1: ["value1", "value2"]}to filter on assets whose metadata have key "key1" with value "value1" or value "value2
- metadata_where = {key2: [2, 10]}to filter on assets whose metadata have key "key2" with a value between 2 and 10.
How to filter based on label categories
The search query is composed of logical expressions following this format:
[job_name].[category_name].count [comparaison_operator] [value]
where:
- [job_name]is the name of the job in the interface
- [category_name]is the name of the category in the interface for this job
- [comparaison_operator]can be one of: [- ==,- >=,- <=,- <,- >]
- [value]is an integer that represents the count of such objects of the given category in the label
These operations can be separated by OR and AND operators
Example:
label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0`
label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0 OR JOB_NER.CATEGORY_B.count > 0`
label_category_search = `(JOB_CLASSIF.CATEGORY_A.count == 1 OR JOB_NER.CATEGORY_B.count > 0) AND JOB_BBOX.CATEGORY_C.count > 10`
Source code in kili/queries/asset/__init__.py
          @typechecked
def assets(
    self,
    project_id: str,
    asset_id: Optional[str] = None,
    skip: int = 0,
    fields: List[str] = [
        "content",
        "createdAt",
        "externalId",
        "id",
        "isHoneypot",
        "jsonMetadata",
        "labels.author.id",
        "labels.author.email",
        "labels.createdAt",
        "labels.id",
        "labels.jsonResponse",
        "skipped",
        "status",
    ],
    asset_id_in: Optional[List[str]] = None,
    consensus_mark_gt: Optional[float] = None,
    consensus_mark_lt: Optional[float] = None,
    disable_tqdm: bool = False,
    external_id_contains: Optional[List[str]] = None,
    first: Optional[int] = None,
    format: Optional[str] = None,  # pylint: disable=redefined-builtin
    honeypot_mark_gt: Optional[float] = None,
    honeypot_mark_lt: Optional[float] = None,
    label_author_in: Optional[List[str]] = None,
    label_consensus_mark_gt: Optional[float] = None,
    label_consensus_mark_lt: Optional[float] = None,
    label_created_at: Optional[str] = None,
    label_created_at_gt: Optional[str] = None,
    label_created_at_lt: Optional[str] = None,
    label_honeypot_mark_gt: Optional[float] = None,
    label_honeypot_mark_lt: Optional[float] = None,
    label_type_in: Optional[List[str]] = None,
    metadata_where: Optional[dict] = None,
    skipped: Optional[bool] = None,
    status_in: Optional[List[str]] = None,
    updated_at_gte: Optional[str] = None,
    updated_at_lte: Optional[str] = None,
    as_generator: bool = False,
    label_category_search: Optional[str] = None,
    download_media: bool = False,
    local_media_dir: Optional[str] = None,
) -> Union[Iterable[Dict], pd.DataFrame]:
    # pylint: disable=line-too-long
    """Get an asset list, an asset generator or a pandas DataFrame that match a set of constraints.
    Args:
        project_id: Identifier of the project.
        asset_id: Identifier of the asset to retrieve.
        asset_id_in: A list of the IDs of the assets to retrieve.
        skip: Number of assets to skip (they are ordered by their date of creation, first to last).
        fields: All the fields to request among the possible fields for the assets.
                See [the documentation](https://docs.kili-technology.com/reference/graphql-api#asset) for all possible fields.
        first: Maximum number of assets to return.
        consensus_mark_gt: Minimum amount of consensus for the asset.
        consensus_mark_lt: Maximum amount of consensus for the asset.
        external_id_contains: Returned assets have an external id that belongs to that list, if given.
        metadata_where: Filters by the values of the metadata of the asset.
        honeypot_mark_gt: Minimum amount of honeypot for the asset.
        honeypot_mark_lt : Maximum amount of honeypot for the asset.
        status_in: Returned assets should have a status that belongs to that list, if given.
            Possible choices: `TODO`, `ONGOING`, `LABELED`, `TO_REVIEW` or `REVIEWED`
        label_type_in: Returned assets should have a label whose type belongs to that list, if given.
        label_author_in: Returned assets should have a label whose status belongs to that list, if given.
        label_consensus_mark_gt: Returned assets should have a label whose consensus is greater than this number.
        label_consensus_mark_lt: Returned assets should have a label whose consensus is lower than this number.
        label_created_at: Returned assets should have a label whose creation date is equal to this date.
        label_created_at_gt: Returned assets should have a label whose creation date is greater than this date.
        label_created_at_lt: Returned assets should have a label whose creation date is lower than this date.
        label_honeypot_mark_gt: Returned assets should have a label whose honeypot is greater than this number
        label_honeypot_mark_lt: Returned assets should have a label whose honeypot is lower than this number
        skipped: Returned assets should be skipped
        updated_at_gte: Returned assets should have a label whose update date is greated or equal to this date.
        updated_at_lte: Returned assets should have a label whose update date is lower or equal to this date.
        format: If equal to 'pandas', returns a pandas DataFrame
        disable_tqdm: If `True`, the progress bar will be disabled
        as_generator: If `True`, a generator on the assets is returned.
        label_category_search: Returned assets should have a label that follows this category search query.
        download_media: Tell is the media have to be downloaded or not.
        local_media_dir: Directory where the media are downloaded if `download_media` is True.
    !!! info "Dates format"
        Date strings should have format: "YYYY-MM-DD"
    Returns:
        A result object which contains the query if it was successful,
            or an error message.
    Example:
        ```
        # returns the assets list of the project
        >>> kili.assets(project_id)
        >>> kili.assets(project_id, asset_id=asset_id)
        # returns a generator of the project assets
        >>> kili.assets(project_id, as_generator=True)
        ```
    !!! example "How to filter based on Metadata"
        - `metadata_where = {key1: "value1"}` to filter on assets whose metadata
            have key "key1" with value "value1"
        - `metadata_where = {key1: ["value1", "value2"]}` to filter on assets whose metadata
            have key "key1" with value "value1" or value "value2
        - `metadata_where = {key2: [2, 10]}` to filter on assets whose metadata
            have key "key2" with a value between 2 and 10.
    !!! example "How to filter based on label categories"
        The search query is composed of logical expressions following this format:
            [job_name].[category_name].count [comparaison_operator] [value]
        where:
        - `[job_name]` is the name of the job in the interface
        - `[category_name]` is the name of the category in the interface for this job
        - `[comparaison_operator]` can be one of: [`==`, `>=`, `<=`, `<`, `>`]
        - `[value]` is an integer that represents the count of such objects of the given category in the label
        These operations can be separated by OR and AND operators
        Example:
            label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0`
            label_category_search = `JOB_CLASSIF.CATEGORY_A.count > 0 OR JOB_NER.CATEGORY_B.count > 0`
            label_category_search = `(JOB_CLASSIF.CATEGORY_A.count == 1 OR JOB_NER.CATEGORY_B.count > 0) AND JOB_BBOX.CATEGORY_C.count > 10`
    """
    if format == "pandas" and as_generator:
        raise ValueError(
            'Argument values as_generator==True and format=="pandas" are not compatible.'
        )
    if label_category_search:
        validate_category_search_query(label_category_search)
    where = AssetWhere(
        project_id=project_id,
        asset_id=asset_id,
        asset_id_in=asset_id_in,
        consensus_mark_gt=consensus_mark_gt,
        consensus_mark_lt=consensus_mark_lt,
        external_id_contains=external_id_contains,
        honeypot_mark_gt=honeypot_mark_gt,
        honeypot_mark_lt=honeypot_mark_lt,
        label_author_in=label_author_in,
        label_consensus_mark_gt=label_consensus_mark_gt,
        label_consensus_mark_lt=label_consensus_mark_lt,
        label_created_at=label_created_at,
        label_created_at_gt=label_created_at_gt,
        label_created_at_lt=label_created_at_lt,
        label_honeypot_mark_gt=label_honeypot_mark_gt,
        label_honeypot_mark_lt=label_honeypot_mark_lt,
        label_type_in=label_type_in,
        metadata_where=metadata_where,
        skipped=skipped,
        status_in=status_in,
        updated_at_gte=updated_at_gte,
        updated_at_lte=updated_at_lte,
        label_category_search=label_category_search,
    )
    options = QueryOptions(disable_tqdm, first, skip, as_generator)
    post_call_function = get_download_assets_function(
        self, download_media, fields, project_id, local_media_dir
    )
    assets = AssetQuery(self.auth.client)(where, fields, options, post_call_function)
    if format == "pandas":
        return pd.DataFrame(assets)
    return assets
count_assets(self, project_id, asset_id=None, asset_id_in=None, external_id_contains=None, metadata_where=None, status_in=None, consensus_mark_gt=None, consensus_mark_lt=None, honeypot_mark_gt=None, honeypot_mark_lt=None, label_type_in=None, label_author_in=None, label_consensus_mark_gt=None, label_consensus_mark_lt=None, label_created_at=None, label_created_at_gt=None, label_created_at_lt=None, label_honeypot_mark_gt=None, label_honeypot_mark_lt=None, skipped=None, updated_at_gte=None, updated_at_lte=None, label_category_search=None)
    Count and return the number of assets with the given constraints.
Parameters beginning with 'label_' apply to labels, others apply to assets.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| project_id | str | Identifier of the project | required | 
| asset_id | Optional[str] | The unique id of the asset to retrieve. | None | 
| asset_id_in | Optional[List[str]] | A list of the ids of the assets to retrieve. | None | 
| external_id_contains | Optional[List[str]] | Returned assets should have an external id that belongs to that list, if given. | None | 
| metadata_where | Optional[dict] | Filters by the values of the metadata of the asset. | None | 
| status_in | Optional[List[str]] | Returned assets should have a status that belongs to that list, if given.
Possible choices:  | None | 
| consensus_mark_gt | Optional[float] | Minimum amount of consensus for the asset. | None | 
| consensus_mark_lt | Optional[float] | Maximum amount of consensus for the asset. | None | 
| honeypot_mark_gt | Optional[float] | Minimum amount of honeypot for the asset. | None | 
| honeypot_mark_lt | Optional[float] | Maximum amount of consensus for the asset. | None | 
| label_type_in | Optional[List[str]] | Returned assets should have a label whose type belongs to that list, if given. | None | 
| label_author_in | Optional[List[str]] | Returned assets should have a label whose status belongs to that list, if given. | None | 
| label_consensus_mark_gt | Optional[float] | Returned assets should have a label whose consensus is greater than this number. | None | 
| label_consensus_mark_lt | Optional[float] | Returned assets should have a label whose consensus is lower than this number. | None | 
| label_created_at | Optional[str] | Returned assets should have a label whose creation date is equal to this date. | None | 
| label_created_at_gt | Optional[str] | Returned assets should have a label whose creation date is greater than this date. | None | 
| label_created_at_lt | Optional[str] | Returned assets should have a label whose creation date is lower than this date. | None | 
| label_honeypot_mark_gt | Optional[float] | Returned assets should have a label whose honeypot is greater than this number. | None | 
| label_honeypot_mark_lt | Optional[float] | Returned assets should have a label whose honeypot is lower than this number. | None | 
| skipped | Optional[bool] | Returned assets should be skipped | None | 
| updated_at_gte | Optional[str] | Returned assets should have a label whose update date is greated or equal to this date. | None | 
| updated_at_lte | Optional[str] | Returned assets should have a label whose update date is lower or equal to this date. | None | 
Dates format
Date strings should have format: "YYYY-MM-DD"
Returns:
| Type | Description | 
|---|---|
| int | A result object which contains the query if it was successful, or an error message. | 
Examples:
>>> kili.count_assets(project_id=project_id)
250
>>> kili.count_assets(asset_id=asset_id)
1
How to filter based on Metadata
- metadata_where = {key1: "value1"}to filter on assets whose metadata have key "key1" with value "value1"
- metadata_where = {key1: ["value1", "value2"]}to filter on assets whose metadata have key "key1" with value "value1" or value "value2
- metadata_where = {key2: [2, 10]}to filter on assets whose metadata have key "key2" with a value between 2 and 10.
Source code in kili/queries/asset/__init__.py
          @typechecked
def count_assets(
    self,
    project_id: str,
    asset_id: Optional[str] = None,
    asset_id_in: Optional[List[str]] = None,
    external_id_contains: Optional[List[str]] = None,
    metadata_where: Optional[dict] = None,
    status_in: Optional[List[str]] = None,
    consensus_mark_gt: Optional[float] = None,
    consensus_mark_lt: Optional[float] = None,
    honeypot_mark_gt: Optional[float] = None,
    honeypot_mark_lt: Optional[float] = None,
    label_type_in: Optional[List[str]] = None,
    label_author_in: Optional[List[str]] = None,
    label_consensus_mark_gt: Optional[float] = None,
    label_consensus_mark_lt: Optional[float] = None,
    label_created_at: Optional[str] = None,
    label_created_at_gt: Optional[str] = None,
    label_created_at_lt: Optional[str] = None,
    label_honeypot_mark_gt: Optional[float] = None,
    label_honeypot_mark_lt: Optional[float] = None,
    skipped: Optional[bool] = None,
    updated_at_gte: Optional[str] = None,
    updated_at_lte: Optional[str] = None,
    label_category_search: Optional[str] = None,
) -> int:
    """Count and return the number of assets with the given constraints.
    Parameters beginning with 'label_' apply to labels, others apply to assets.
    Args:
        project_id: Identifier of the project
        asset_id: The unique id of the asset to retrieve.
        asset_id_in: A list of the ids of the assets to retrieve.
        external_id_contains: Returned assets should have an external id
            that belongs to that list, if given.
        metadata_where: Filters by the values of the metadata of the asset.
        status_in: Returned assets should have a status that belongs to that list, if given.
            Possible choices: `TODO`, `ONGOING`, `LABELED` or `REVIEWED`
        consensus_mark_gt: Minimum amount of consensus for the asset.
        consensus_mark_lt: Maximum amount of consensus for the asset.
        honeypot_mark_gt: Minimum amount of honeypot for the asset.
        honeypot_mark_lt: Maximum amount of consensus for the asset.
        label_type_in: Returned assets should have a label
            whose type belongs to that list, if given.
        label_author_in: Returned assets should have a label
            whose status belongs to that list, if given.
        label_consensus_mark_gt: Returned assets should have a label
            whose consensus is greater than this number.
        label_consensus_mark_lt: Returned assets should have a label
            whose consensus is lower than this number.
        label_created_at: Returned assets should have a label
            whose creation date is equal to this date.
        label_created_at_gt: Returned assets should have a label
            whose creation date is greater than this date.
        label_created_at_lt: Returned assets should have a label
            whose creation date is lower than this date.
        label_honeypot_mark_gt: Returned assets should have a label
            whose honeypot is greater than this number.
        label_honeypot_mark_lt: Returned assets should have a label
            whose honeypot is lower than this number.
        skipped: Returned assets should be skipped
        updated_at_gte: Returned assets should have a label
            whose update date is greated or equal to this date.
        updated_at_lte: Returned assets should have a label
            whose update date is lower or equal to this date.
    !!! info "Dates format"
        Date strings should have format: "YYYY-MM-DD"
    Returns:
        A result object which contains the query if it was successful,
            or an error message.
    Examples:
        >>> kili.count_assets(project_id=project_id)
        250
        >>> kili.count_assets(asset_id=asset_id)
        1
    !!! example "How to filter based on Metadata"
        - `metadata_where = {key1: "value1"}` to filter on assets whose metadata
            have key "key1" with value "value1"
        - `metadata_where = {key1: ["value1", "value2"]}` to filter on assets whose metadata
            have key "key1" with value "value1" or value "value2
        - `metadata_where = {key2: [2, 10]}` to filter on assets whose metadata
            have key "key2" with a value between 2 and 10.
    """
    if label_category_search:
        validate_category_search_query(label_category_search)
    where = AssetWhere(
        project_id=project_id,
        asset_id=asset_id,
        asset_id_in=asset_id_in,
        consensus_mark_gt=consensus_mark_gt,
        consensus_mark_lt=consensus_mark_lt,
        external_id_contains=external_id_contains,
        honeypot_mark_gt=honeypot_mark_gt,
        honeypot_mark_lt=honeypot_mark_lt,
        label_author_in=label_author_in,
        label_consensus_mark_gt=label_consensus_mark_gt,
        label_consensus_mark_lt=label_consensus_mark_lt,
        label_created_at=label_created_at,
        label_created_at_gt=label_created_at_gt,
        label_created_at_lt=label_created_at_lt,
        label_honeypot_mark_gt=label_honeypot_mark_gt,
        label_honeypot_mark_lt=label_honeypot_mark_lt,
        label_type_in=label_type_in,
        metadata_where=metadata_where,
        skipped=skipped,
        status_in=status_in,
        updated_at_gte=updated_at_gte,
        updated_at_lte=updated_at_lte,
        label_category_search=label_category_search,
    )
    return AssetQuery(self.auth.client).count(where)
Mutations
Set of Asset mutations
Source code in kili/mutations/asset/__init__.py
          class MutationsAsset:
    """
    Set of Asset mutations
    """
    # pylint: disable=too-many-arguments,too-many-locals
    def __init__(self, auth: KiliAuth):
        """Initialize the subclass.
        Args:
            auth: KiliAuth object
        """
        self.auth = auth
    @typechecked
    def append_many_to_dataset(
        self,
        project_id: str,
        content_array: Optional[List[str]] = None,
        external_id_array: Optional[List[str]] = None,
        id_array: Optional[List[str]] = None,
        is_honeypot_array: Optional[List[bool]] = None,
        status_array: Optional[List[str]] = None,
        json_content_array: Optional[List[List[Union[dict, str]]]] = None,
        json_metadata_array: Optional[List[dict]] = None,
        disable_tqdm: bool = False,
    ) -> Dict[str, str]:
        # pylint: disable=line-too-long
        """Append assets to a project.
        Args:
            project_id: Identifier of the project
            content_array: List of elements added to the assets of the project
                Must not be None except if you provide json_content_array.
                - For a `TEXT` project, the content can be either raw text, or URLs to TEXT assets.
                - For an `IMAGE` / `PDF` project, the content can be either URLs or paths to existing
                    images/pdf on your computer.
                - For a VIDEO project, the content can be either URLs pointing to videos hosted on a web server or paths to
                existing video files on your computer. If you want to import video from frames, look at the json_content
                section below.
                - For an `VIDEO_LEGACY` project, the content can be only be URLs
            external_id_array: List of external ids given to identify the assets.
                If None, random identifiers are created.
            is_honeypot_array:  Whether to use the asset for honeypot
            status_array: By default, all imported assets are set to `TODO`. Other options:
                `ONGOING`, `LABELED`, `REVIEWED`.
            json_content_array: Useful for `VIDEO` or `TEXT` projects only.
                - For `VIDEO` projects, each element is a sequence of frames, i.e. a
                    list of URLs to images or a list of paths to images.
                - For `TEXT` projects, each element is a json_content dict,
                    formatted according to documentation [on how to import
                rich-text assets](https://github.com/kili-technology/kili-python-sdk/blob/master/recipes/import_text_assets.ipynb)
            json_metadata_array: The metadata given to each asset should be stored in a json like dict with keys.
                - Add metadata visible on the asset with the following keys: `imageUrl`, `text`, `url`.
                    Example for one asset: `json_metadata_array = [{'imageUrl': '','text': '','url': ''}]`.
                - For VIDEO projects (and not VIDEO_LEGACY), you can specify a value with key 'processingParameters' to specify the sampling rate (default: 30).
                    Example for one asset: `json_metadata_array = [{'processingParameters': {'framesPlayedPerSecond': 10}}]`.
            disable_tqdm: If `True`, the progress bar will be disabled
        Returns:
            A result object which indicates if the mutation was successful, or an error message.
        Examples:
            >>> kili.append_many_to_dataset(
                    project_id=project_id,
                    content_array=['https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png'])
        !!! example "Recipe"
            - For more detailed examples on how to import assets,
                see [the recipe](https://docs.kili-technology.com/recipes/importing-data).
            - For more detailed examples on how to import text assets,
                see [the recipe](https://github.com/kili-technology/kili-python-sdk/blob/master/recipes/import_text_assets.ipynb).
        """
        if content_array is None and json_content_array is None:
            raise ValueError("Variables content_array and json_content_array cannot be both None.")
        nb_data = (
            len(content_array)
            if content_array is not None
            else len(json_content_array)  # type:ignore
        )
        field_mapping = {
            "content": content_array,
            "json_content": json_content_array,
            "external_id": external_id_array,
            "id": id_array,
            "status": status_array,
            "json_metadata": json_metadata_array,
            "is_honeypot": is_honeypot_array,
        }
        assets = [{}] * nb_data
        for key, value in field_mapping.items():
            if value is not None:
                assets = [{**assets[i], key: value[i]} for i in range(nb_data)]
        result = import_assets(
            self.auth, project_id=project_id, assets=assets, disable_tqdm=disable_tqdm
        )
        return result
    @typechecked
    # pylint: disable=unused-argument
    def update_properties_in_assets(
        self,
        asset_ids: Optional[List[str]] = None,
        external_ids: Optional[List[str]] = None,
        priorities: Optional[List[int]] = None,
        json_metadatas: Optional[List[Union[dict, str]]] = None,
        consensus_marks: Optional[List[float]] = None,
        honeypot_marks: Optional[List[float]] = None,
        to_be_labeled_by_array: Optional[List[List[str]]] = None,
        contents: Optional[List[str]] = None,
        json_contents: Optional[List[str]] = None,
        status_array: Optional[List[str]] = None,
        is_used_for_consensus_array: Optional[List[bool]] = None,
        is_honeypot_array: Optional[List[bool]] = None,
        project_id: Optional[str] = None,
    ) -> List[Dict]:
        """Update the properties of one or more assets.
        Args:
            asset_ids: The internal asset IDs to modify.
            external_ids: The external asset IDs to modify (if `asset_ids` is not already provided).
            priorities: You can change the priority of the assets.
                By default, all assets have a priority of 0.
            json_metadatas: The metadata given to an asset should be stored
                in a json like dict with keys `imageUrl`, `text`, `url`:
                `json_metadata = {'imageUrl': '','text': '','url': ''}`
            consensus_marks: Should be between 0 and 1.
            honeypot_marks: Should be between 0 and 1.
            to_be_labeled_by_array: If given, each element of the list should contain the emails of
                the labelers authorized to label the asset.
            contents: - For a NLP project, the content can be directly in text format.
                - For an Image / Video / Pdf project, the content must be hosted on a web server,
                and you point Kili to your data by giving the URLs.
            json_contents: - For a NLP project, the `json_content`
                is a text formatted using RichText.
                - For a Video project, the`json_content` is a json containg urls pointing
                    to each frame of the video.
            status_array: Each element should be in `TODO`, `ONGOING`, `LABELED`,
                `TO_REVIEW`, `REVIEWED`.
            is_used_for_consensus_array: Whether to use the asset to compute consensus kpis or not.
            is_honeypot_array: Whether to use the asset for honeypot.
            project_id: The project ID. Only required if `external_ids` argument is provided.
        Returns:
            A result object which indicates if the mutation was successful,
                or an error message.
        Examples:
            >>> kili.update_properties_in_assets(
                    asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
                    consensus_marks=[1, 0.7],
                    contents=[None, 'https://to/second/asset.png'],
                    honeypot_marks=[0.8, 0.5],
                    is_honeypot_array=[True, True],
                    is_used_for_consensus_array=[True, False],
                    priorities=[None, 2],
                    status_array=['LABELED', 'REVIEWED'],
                    to_be_labeled_by_array=[['test+pierre@kili-technology.com'], None],
                )
        """
        if asset_ids is not None and external_ids is not None:
            warnings.warn(
                "The use of `external_ids` argument has changed. It is now used to identify which"
                " properties of which assets to update. Please use"
                " `kili.change_asset_external_ids()` method instead to change asset external IDs.",
                DeprecationWarning,
            )
            raise MissingArgumentError("Please provide either `asset_ids` or `external_ids`.")
        asset_ids = get_asset_ids_or_throw_error(self, asset_ids, external_ids, project_id)
        saved_args = locals()
        parameters = {
            k: v
            for (k, v) in saved_args.items()
            if k
            in [
                "asset_ids",
                "priorities",
                "json_metadatas",
                "consensus_marks",
                "honeypot_marks",
                "to_be_labeled_by_array",
                "contents",
                "json_contents",
                "status_array",
                "is_used_for_consensus_array",
                "is_honeypot_array",
            ]
        }
        properties_to_batch = process_update_properties_in_assets_parameters(parameters)
        def generate_variables(batch: Dict) -> Dict:
            data = {
                "priority": batch["priorities"],
                "jsonMetadata": batch["json_metadatas"],
                "consensusMark": batch["consensus_marks"],
                "honeypotMark": batch["honeypot_marks"],
                "toBeLabeledBy": batch["to_be_labeled_by_array"],
                "shouldResetToBeLabeledBy": batch["should_reset_to_be_labeled_by_array"],
                "content": batch["contents"],
                "jsonContent": batch["json_contents"],
                "status": batch["status_array"],
                "isUsedForConsensus": batch["is_used_for_consensus_array"],
                "isHoneypot": batch["is_honeypot_array"],
            }
            data_array = [dict(zip(data, t)) for t in zip(*data.values())]
            return {
                "whereArray": [{"id": asset_id} for asset_id in batch["asset_ids"]],
                "dataArray": data_array,
            }
        results = _mutate_from_paginated_call(
            self,
            properties_to_batch,
            generate_variables,
            GQL_UPDATE_PROPERTIES_IN_ASSETS,
        )
        formated_results = [format_result("data", result, Asset) for result in results]
        return [item for batch_list in formated_results for item in batch_list]
    @typechecked
    def change_asset_external_ids(
        self,
        new_external_ids: List[str],
        asset_ids: Optional[List[str]] = None,
        external_ids: Optional[List[str]] = None,
        project_id: Optional[str] = None,
    ) -> List[Dict]:
        """Update the external IDs of one or more assets.
        Args:
            new_external_ids: The new external IDs of the assets.
            asset_ids: The asset IDs to modify.
            external_ids: The external asset IDs to modify (if `asset_ids` is not already provided).
            project_id: The project ID. Only required if `external_ids` argument is provided.
        Returns:
            A result object which indicates if the mutation was successful,
                or an error message.
        Examples:
            >>> kili.change_asset_external_ids(
                    new_external_ids=["asset1", "asset2"],
                    asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
                )
        """
        asset_ids = get_asset_ids_or_throw_error(self, asset_ids, external_ids, project_id)
        parameters = {
            "asset_ids": asset_ids,
            "new_external_ids": new_external_ids,
            "json_metadatas": None,
            "to_be_labeled_by_array": None,
        }
        properties_to_batch = process_update_properties_in_assets_parameters(parameters)
        def generate_variables(batch: Dict) -> Dict:
            data = {
                "externalId": batch["new_external_ids"],
                "jsonMetadata": batch["json_metadatas"],
                "toBeLabeledBy": batch["to_be_labeled_by_array"],
                "shouldResetToBeLabeledBy": batch["should_reset_to_be_labeled_by_array"],
            }
            data_array = [dict(zip(data, t)) for t in zip(*data.values())]
            return {
                "whereArray": [{"id": asset_id} for asset_id in batch["asset_ids"]],
                "dataArray": data_array,
            }
        results = _mutate_from_paginated_call(
            self,
            properties_to_batch,
            generate_variables,
            GQL_UPDATE_PROPERTIES_IN_ASSETS,
        )
        formated_results = [format_result("data", result, Asset) for result in results]
        return [item for batch_list in formated_results for item in batch_list]
    @typechecked
    def delete_many_from_dataset(
        self,
        asset_ids: Optional[List[str]] = None,
        external_ids: Optional[List[str]] = None,
        project_id: Optional[str] = None,
    ) -> Asset:
        """Delete assets from a project.
        Args:
            asset_ids: The list of asset internal IDs to delete.
            external_ids: The list of asset external IDs to delete.
            project_id: The project ID. Only required if `external_ids` argument is provided.
        Returns:
            A result object which indicates if the mutation was successful,
                or an error message.
        """
        asset_ids = get_asset_ids_or_throw_error(self, asset_ids, external_ids, project_id)
        properties_to_batch: Dict[str, Optional[List[Any]]] = {"asset_ids": asset_ids}
        def generate_variables(batch):
            return {"where": {"idIn": batch["asset_ids"]}}
        results = _mutate_from_paginated_call(
            self, properties_to_batch, generate_variables, GQL_DELETE_MANY_FROM_DATASET
        )
        return format_result("data", results[0], Asset)
    @typechecked
    def add_to_review(
        self,
        asset_ids: Optional[List[str]] = None,
        external_ids: Optional[List[str]] = None,
        project_id: Optional[str] = None,
    ) -> Optional[Dict[str, Any]]:
        """Add assets to review.
        !!! warning
            Assets without any label will be ignored.
        Args:
            asset_ids: The asset internal IDs to add to review.
            external_ids: The asset external IDs to add to review.
            project_id: The project ID. Only required if `external_ids` argument is provided.
        Returns:
            A dict object with the project `id` and the `asset_ids` of assets moved to review.
            `None` if no assets have changed status (already had `TO_REVIEW` status for example).
            An error message if mutation failed.
        Examples:
            >>> kili.add_to_review(
                    asset_ids=[
                        "ckg22d81r0jrg0885unmuswj8",
                        "ckg22d81s0jrh0885pdxfd03n",
                        ],
                )
        """
        asset_ids = get_asset_ids_or_throw_error(self, asset_ids, external_ids, project_id)
        properties_to_batch: Dict[str, Optional[List[Any]]] = {"asset_ids": asset_ids}
        def generate_variables(batch):
            return {"where": {"idIn": batch["asset_ids"]}}
        results = _mutate_from_paginated_call(
            self,
            properties_to_batch,
            generate_variables,
            GQL_ADD_ALL_LABELED_ASSETS_TO_REVIEW,
        )
        result = format_result("data", results[0])
        if isinstance(result, dict) and "id" in result:
            assets_in_review = AssetQuery(self.auth.client)(
                AssetWhere(project_id=result["id"], asset_id_in=asset_ids, status_in=["TO_REVIEW"]),
                ["id"],
                QueryOptions(disable_tqdm=True),
            )
            result["asset_ids"] = [asset["id"] for asset in assets_in_review]
            return result
        return result
    @typechecked
    def send_back_to_queue(
        self,
        asset_ids: Optional[List[str]] = None,
        external_ids: Optional[List[str]] = None,
        project_id: Optional[str] = None,
    ) -> Dict[str, Any]:
        """Send assets back to queue.
        Args:
            asset_ids: List of internal IDs of assets to send back to queue.
            external_ids: List of external IDs of assets to send back to queue.
            project_id: The project ID. Only required if `external_ids` argument is provided.
        Returns:
            A dict object with the project `id` and the `asset_ids` of assets moved to queue.
            An error message if mutation failed.
        Examples:
            >>> kili.send_back_to_queue(
                    asset_ids=[
                        "ckg22d81r0jrg0885unmuswj8",
                        "ckg22d81s0jrh0885pdxfd03n",
                        ],
                )
        """
        asset_ids = get_asset_ids_or_throw_error(self, asset_ids, external_ids, project_id)
        properties_to_batch: Dict[str, Optional[List[Any]]] = {"asset_ids": asset_ids}
        def generate_variables(batch):
            return {"where": {"idIn": batch["asset_ids"]}}
        results = _mutate_from_paginated_call(
            self, properties_to_batch, generate_variables, GQL_SEND_BACK_ASSETS_TO_QUEUE
        )
        result = format_result("data", results[0])
        assets_in_queue = AssetQuery(self.auth.client)(
            AssetWhere(project_id=result["id"], asset_id_in=asset_ids, status_in=["ONGOING"]),
            ["id"],
            QueryOptions(disable_tqdm=True),
        )
        result["asset_ids"] = [asset["id"] for asset in assets_in_queue]
        return result
add_to_review(self, asset_ids=None, external_ids=None, project_id=None)
    Add assets to review.
Warning
Assets without any label will be ignored.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| asset_ids | Optional[List[str]] | The asset internal IDs to add to review. | None | 
| external_ids | Optional[List[str]] | The asset external IDs to add to review. | None | 
| project_id | Optional[str] | The project ID. Only required if  | None | 
Returns:
| Type | Description | 
|---|---|
| Optional[Dict[str, Any]] | A dict object with the project  | 
Examples:
>>> kili.add_to_review(
        asset_ids=[
            "ckg22d81r0jrg0885unmuswj8",
            "ckg22d81s0jrh0885pdxfd03n",
            ],
    )
Source code in kili/mutations/asset/__init__.py
          @typechecked
def add_to_review(
    self,
    asset_ids: Optional[List[str]] = None,
    external_ids: Optional[List[str]] = None,
    project_id: Optional[str] = None,
) -> Optional[Dict[str, Any]]:
    """Add assets to review.
    !!! warning
        Assets without any label will be ignored.
    Args:
        asset_ids: The asset internal IDs to add to review.
        external_ids: The asset external IDs to add to review.
        project_id: The project ID. Only required if `external_ids` argument is provided.
    Returns:
        A dict object with the project `id` and the `asset_ids` of assets moved to review.
        `None` if no assets have changed status (already had `TO_REVIEW` status for example).
        An error message if mutation failed.
    Examples:
        >>> kili.add_to_review(
                asset_ids=[
                    "ckg22d81r0jrg0885unmuswj8",
                    "ckg22d81s0jrh0885pdxfd03n",
                    ],
            )
    """
    asset_ids = get_asset_ids_or_throw_error(self, asset_ids, external_ids, project_id)
    properties_to_batch: Dict[str, Optional[List[Any]]] = {"asset_ids": asset_ids}
    def generate_variables(batch):
        return {"where": {"idIn": batch["asset_ids"]}}
    results = _mutate_from_paginated_call(
        self,
        properties_to_batch,
        generate_variables,
        GQL_ADD_ALL_LABELED_ASSETS_TO_REVIEW,
    )
    result = format_result("data", results[0])
    if isinstance(result, dict) and "id" in result:
        assets_in_review = AssetQuery(self.auth.client)(
            AssetWhere(project_id=result["id"], asset_id_in=asset_ids, status_in=["TO_REVIEW"]),
            ["id"],
            QueryOptions(disable_tqdm=True),
        )
        result["asset_ids"] = [asset["id"] for asset in assets_in_review]
        return result
    return result
append_many_to_dataset(self, project_id, content_array=None, external_id_array=None, id_array=None, is_honeypot_array=None, status_array=None, json_content_array=None, json_metadata_array=None, disable_tqdm=False)
    Append assets to a project.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| project_id | str | Identifier of the project | required | 
| content_array | Optional[List[str]] | List of elements added to the assets of the project Must not be None except if you provide json_content_array. 
 | None | 
| external_id_array | Optional[List[str]] | List of external ids given to identify the assets. If None, random identifiers are created. | None | 
| is_honeypot_array | Optional[List[bool]] | Whether to use the asset for honeypot | None | 
| status_array | Optional[List[str]] | By default, all imported assets are set to  | None | 
| json_content_array | Optional[List[List[Union[dict, str]]]] | Useful for  
 | None | 
| json_metadata_array | Optional[List[dict]] | The metadata given to each asset should be stored in a json like dict with keys. 
 | None | 
| disable_tqdm | bool | If  | False | 
Returns:
| Type | Description | 
|---|---|
| Dict[str, str] | A result object which indicates if the mutation was successful, or an error message. | 
Examples:
>>> kili.append_many_to_dataset(
        project_id=project_id,
        content_array=['https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png'])
Recipe
- For more detailed examples on how to import assets, see the recipe.
- For more detailed examples on how to import text assets, see the recipe.
Source code in kili/mutations/asset/__init__.py
          @typechecked
def append_many_to_dataset(
    self,
    project_id: str,
    content_array: Optional[List[str]] = None,
    external_id_array: Optional[List[str]] = None,
    id_array: Optional[List[str]] = None,
    is_honeypot_array: Optional[List[bool]] = None,
    status_array: Optional[List[str]] = None,
    json_content_array: Optional[List[List[Union[dict, str]]]] = None,
    json_metadata_array: Optional[List[dict]] = None,
    disable_tqdm: bool = False,
) -> Dict[str, str]:
    # pylint: disable=line-too-long
    """Append assets to a project.
    Args:
        project_id: Identifier of the project
        content_array: List of elements added to the assets of the project
            Must not be None except if you provide json_content_array.
            - For a `TEXT` project, the content can be either raw text, or URLs to TEXT assets.
            - For an `IMAGE` / `PDF` project, the content can be either URLs or paths to existing
                images/pdf on your computer.
            - For a VIDEO project, the content can be either URLs pointing to videos hosted on a web server or paths to
            existing video files on your computer. If you want to import video from frames, look at the json_content
            section below.
            - For an `VIDEO_LEGACY` project, the content can be only be URLs
        external_id_array: List of external ids given to identify the assets.
            If None, random identifiers are created.
        is_honeypot_array:  Whether to use the asset for honeypot
        status_array: By default, all imported assets are set to `TODO`. Other options:
            `ONGOING`, `LABELED`, `REVIEWED`.
        json_content_array: Useful for `VIDEO` or `TEXT` projects only.
            - For `VIDEO` projects, each element is a sequence of frames, i.e. a
                list of URLs to images or a list of paths to images.
            - For `TEXT` projects, each element is a json_content dict,
                formatted according to documentation [on how to import
            rich-text assets](https://github.com/kili-technology/kili-python-sdk/blob/master/recipes/import_text_assets.ipynb)
        json_metadata_array: The metadata given to each asset should be stored in a json like dict with keys.
            - Add metadata visible on the asset with the following keys: `imageUrl`, `text`, `url`.
                Example for one asset: `json_metadata_array = [{'imageUrl': '','text': '','url': ''}]`.
            - For VIDEO projects (and not VIDEO_LEGACY), you can specify a value with key 'processingParameters' to specify the sampling rate (default: 30).
                Example for one asset: `json_metadata_array = [{'processingParameters': {'framesPlayedPerSecond': 10}}]`.
        disable_tqdm: If `True`, the progress bar will be disabled
    Returns:
        A result object which indicates if the mutation was successful, or an error message.
    Examples:
        >>> kili.append_many_to_dataset(
                project_id=project_id,
                content_array=['https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png'])
    !!! example "Recipe"
        - For more detailed examples on how to import assets,
            see [the recipe](https://docs.kili-technology.com/recipes/importing-data).
        - For more detailed examples on how to import text assets,
            see [the recipe](https://github.com/kili-technology/kili-python-sdk/blob/master/recipes/import_text_assets.ipynb).
    """
    if content_array is None and json_content_array is None:
        raise ValueError("Variables content_array and json_content_array cannot be both None.")
    nb_data = (
        len(content_array)
        if content_array is not None
        else len(json_content_array)  # type:ignore
    )
    field_mapping = {
        "content": content_array,
        "json_content": json_content_array,
        "external_id": external_id_array,
        "id": id_array,
        "status": status_array,
        "json_metadata": json_metadata_array,
        "is_honeypot": is_honeypot_array,
    }
    assets = [{}] * nb_data
    for key, value in field_mapping.items():
        if value is not None:
            assets = [{**assets[i], key: value[i]} for i in range(nb_data)]
    result = import_assets(
        self.auth, project_id=project_id, assets=assets, disable_tqdm=disable_tqdm
    )
    return result
change_asset_external_ids(self, new_external_ids, asset_ids=None, external_ids=None, project_id=None)
    Update the external IDs of one or more assets.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| new_external_ids | List[str] | The new external IDs of the assets. | required | 
| asset_ids | Optional[List[str]] | The asset IDs to modify. | None | 
| external_ids | Optional[List[str]] | The external asset IDs to modify (if  | None | 
| project_id | Optional[str] | The project ID. Only required if  | None | 
Returns:
| Type | Description | 
|---|---|
| List[Dict] | A result object which indicates if the mutation was successful, or an error message. | 
Examples:
>>> kili.change_asset_external_ids(
        new_external_ids=["asset1", "asset2"],
        asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
    )
Source code in kili/mutations/asset/__init__.py
          @typechecked
def change_asset_external_ids(
    self,
    new_external_ids: List[str],
    asset_ids: Optional[List[str]] = None,
    external_ids: Optional[List[str]] = None,
    project_id: Optional[str] = None,
) -> List[Dict]:
    """Update the external IDs of one or more assets.
    Args:
        new_external_ids: The new external IDs of the assets.
        asset_ids: The asset IDs to modify.
        external_ids: The external asset IDs to modify (if `asset_ids` is not already provided).
        project_id: The project ID. Only required if `external_ids` argument is provided.
    Returns:
        A result object which indicates if the mutation was successful,
            or an error message.
    Examples:
        >>> kili.change_asset_external_ids(
                new_external_ids=["asset1", "asset2"],
                asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
            )
    """
    asset_ids = get_asset_ids_or_throw_error(self, asset_ids, external_ids, project_id)
    parameters = {
        "asset_ids": asset_ids,
        "new_external_ids": new_external_ids,
        "json_metadatas": None,
        "to_be_labeled_by_array": None,
    }
    properties_to_batch = process_update_properties_in_assets_parameters(parameters)
    def generate_variables(batch: Dict) -> Dict:
        data = {
            "externalId": batch["new_external_ids"],
            "jsonMetadata": batch["json_metadatas"],
            "toBeLabeledBy": batch["to_be_labeled_by_array"],
            "shouldResetToBeLabeledBy": batch["should_reset_to_be_labeled_by_array"],
        }
        data_array = [dict(zip(data, t)) for t in zip(*data.values())]
        return {
            "whereArray": [{"id": asset_id} for asset_id in batch["asset_ids"]],
            "dataArray": data_array,
        }
    results = _mutate_from_paginated_call(
        self,
        properties_to_batch,
        generate_variables,
        GQL_UPDATE_PROPERTIES_IN_ASSETS,
    )
    formated_results = [format_result("data", result, Asset) for result in results]
    return [item for batch_list in formated_results for item in batch_list]
delete_many_from_dataset(self, asset_ids=None, external_ids=None, project_id=None)
    Delete assets from a project.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| asset_ids | Optional[List[str]] | The list of asset internal IDs to delete. | None | 
| external_ids | Optional[List[str]] | The list of asset external IDs to delete. | None | 
| project_id | Optional[str] | The project ID. Only required if  | None | 
Returns:
| Type | Description | 
|---|---|
| Asset | A result object which indicates if the mutation was successful, or an error message. | 
Source code in kili/mutations/asset/__init__.py
          @typechecked
def delete_many_from_dataset(
    self,
    asset_ids: Optional[List[str]] = None,
    external_ids: Optional[List[str]] = None,
    project_id: Optional[str] = None,
) -> Asset:
    """Delete assets from a project.
    Args:
        asset_ids: The list of asset internal IDs to delete.
        external_ids: The list of asset external IDs to delete.
        project_id: The project ID. Only required if `external_ids` argument is provided.
    Returns:
        A result object which indicates if the mutation was successful,
            or an error message.
    """
    asset_ids = get_asset_ids_or_throw_error(self, asset_ids, external_ids, project_id)
    properties_to_batch: Dict[str, Optional[List[Any]]] = {"asset_ids": asset_ids}
    def generate_variables(batch):
        return {"where": {"idIn": batch["asset_ids"]}}
    results = _mutate_from_paginated_call(
        self, properties_to_batch, generate_variables, GQL_DELETE_MANY_FROM_DATASET
    )
    return format_result("data", results[0], Asset)
send_back_to_queue(self, asset_ids=None, external_ids=None, project_id=None)
    Send assets back to queue.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| asset_ids | Optional[List[str]] | List of internal IDs of assets to send back to queue. | None | 
| external_ids | Optional[List[str]] | List of external IDs of assets to send back to queue. | None | 
| project_id | Optional[str] | The project ID. Only required if  | None | 
Returns:
| Type | Description | 
|---|---|
| Dict[str, Any] | A dict object with the project  | 
Examples:
>>> kili.send_back_to_queue(
        asset_ids=[
            "ckg22d81r0jrg0885unmuswj8",
            "ckg22d81s0jrh0885pdxfd03n",
            ],
    )
Source code in kili/mutations/asset/__init__.py
          @typechecked
def send_back_to_queue(
    self,
    asset_ids: Optional[List[str]] = None,
    external_ids: Optional[List[str]] = None,
    project_id: Optional[str] = None,
) -> Dict[str, Any]:
    """Send assets back to queue.
    Args:
        asset_ids: List of internal IDs of assets to send back to queue.
        external_ids: List of external IDs of assets to send back to queue.
        project_id: The project ID. Only required if `external_ids` argument is provided.
    Returns:
        A dict object with the project `id` and the `asset_ids` of assets moved to queue.
        An error message if mutation failed.
    Examples:
        >>> kili.send_back_to_queue(
                asset_ids=[
                    "ckg22d81r0jrg0885unmuswj8",
                    "ckg22d81s0jrh0885pdxfd03n",
                    ],
            )
    """
    asset_ids = get_asset_ids_or_throw_error(self, asset_ids, external_ids, project_id)
    properties_to_batch: Dict[str, Optional[List[Any]]] = {"asset_ids": asset_ids}
    def generate_variables(batch):
        return {"where": {"idIn": batch["asset_ids"]}}
    results = _mutate_from_paginated_call(
        self, properties_to_batch, generate_variables, GQL_SEND_BACK_ASSETS_TO_QUEUE
    )
    result = format_result("data", results[0])
    assets_in_queue = AssetQuery(self.auth.client)(
        AssetWhere(project_id=result["id"], asset_id_in=asset_ids, status_in=["ONGOING"]),
        ["id"],
        QueryOptions(disable_tqdm=True),
    )
    result["asset_ids"] = [asset["id"] for asset in assets_in_queue]
    return result
update_properties_in_assets(self, asset_ids=None, external_ids=None, priorities=None, json_metadatas=None, consensus_marks=None, honeypot_marks=None, to_be_labeled_by_array=None, contents=None, json_contents=None, status_array=None, is_used_for_consensus_array=None, is_honeypot_array=None, project_id=None)
    Update the properties of one or more assets.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
| asset_ids | Optional[List[str]] | The internal asset IDs to modify. | None | 
| external_ids | Optional[List[str]] | The external asset IDs to modify (if  | None | 
| priorities | Optional[List[int]] | You can change the priority of the assets. By default, all assets have a priority of 0. | None | 
| json_metadatas | Optional[List[Union[dict, str]]] | The metadata given to an asset should be stored
in a json like dict with keys  | None | 
| consensus_marks | Optional[List[float]] | Should be between 0 and 1. | None | 
| honeypot_marks | Optional[List[float]] | Should be between 0 and 1. | None | 
| to_be_labeled_by_array | Optional[List[List[str]]] | If given, each element of the list should contain the emails of the labelers authorized to label the asset. | None | 
| contents | Optional[List[str]] | 
 | None | 
| json_contents | Optional[List[str]] | 
 | None | 
| status_array | Optional[List[str]] | Each element should be in  | None | 
| is_used_for_consensus_array | Optional[List[bool]] | Whether to use the asset to compute consensus kpis or not. | None | 
| is_honeypot_array | Optional[List[bool]] | Whether to use the asset for honeypot. | None | 
| project_id | Optional[str] | The project ID. Only required if  | None | 
Returns:
| Type | Description | 
|---|---|
| List[Dict] | A result object which indicates if the mutation was successful, or an error message. | 
Examples:
>>> kili.update_properties_in_assets(
        asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
        consensus_marks=[1, 0.7],
        contents=[None, 'https://to/second/asset.png'],
        honeypot_marks=[0.8, 0.5],
        is_honeypot_array=[True, True],
        is_used_for_consensus_array=[True, False],
        priorities=[None, 2],
        status_array=['LABELED', 'REVIEWED'],
        to_be_labeled_by_array=[['test+pierre@kili-technology.com'], None],
    )
Source code in kili/mutations/asset/__init__.py
          @typechecked
# pylint: disable=unused-argument
def update_properties_in_assets(
    self,
    asset_ids: Optional[List[str]] = None,
    external_ids: Optional[List[str]] = None,
    priorities: Optional[List[int]] = None,
    json_metadatas: Optional[List[Union[dict, str]]] = None,
    consensus_marks: Optional[List[float]] = None,
    honeypot_marks: Optional[List[float]] = None,
    to_be_labeled_by_array: Optional[List[List[str]]] = None,
    contents: Optional[List[str]] = None,
    json_contents: Optional[List[str]] = None,
    status_array: Optional[List[str]] = None,
    is_used_for_consensus_array: Optional[List[bool]] = None,
    is_honeypot_array: Optional[List[bool]] = None,
    project_id: Optional[str] = None,
) -> List[Dict]:
    """Update the properties of one or more assets.
    Args:
        asset_ids: The internal asset IDs to modify.
        external_ids: The external asset IDs to modify (if `asset_ids` is not already provided).
        priorities: You can change the priority of the assets.
            By default, all assets have a priority of 0.
        json_metadatas: The metadata given to an asset should be stored
            in a json like dict with keys `imageUrl`, `text`, `url`:
            `json_metadata = {'imageUrl': '','text': '','url': ''}`
        consensus_marks: Should be between 0 and 1.
        honeypot_marks: Should be between 0 and 1.
        to_be_labeled_by_array: If given, each element of the list should contain the emails of
            the labelers authorized to label the asset.
        contents: - For a NLP project, the content can be directly in text format.
            - For an Image / Video / Pdf project, the content must be hosted on a web server,
            and you point Kili to your data by giving the URLs.
        json_contents: - For a NLP project, the `json_content`
            is a text formatted using RichText.
            - For a Video project, the`json_content` is a json containg urls pointing
                to each frame of the video.
        status_array: Each element should be in `TODO`, `ONGOING`, `LABELED`,
            `TO_REVIEW`, `REVIEWED`.
        is_used_for_consensus_array: Whether to use the asset to compute consensus kpis or not.
        is_honeypot_array: Whether to use the asset for honeypot.
        project_id: The project ID. Only required if `external_ids` argument is provided.
    Returns:
        A result object which indicates if the mutation was successful,
            or an error message.
    Examples:
        >>> kili.update_properties_in_assets(
                asset_ids=["ckg22d81r0jrg0885unmuswj8", "ckg22d81s0jrh0885pdxfd03n"],
                consensus_marks=[1, 0.7],
                contents=[None, 'https://to/second/asset.png'],
                honeypot_marks=[0.8, 0.5],
                is_honeypot_array=[True, True],
                is_used_for_consensus_array=[True, False],
                priorities=[None, 2],
                status_array=['LABELED', 'REVIEWED'],
                to_be_labeled_by_array=[['test+pierre@kili-technology.com'], None],
            )
    """
    if asset_ids is not None and external_ids is not None:
        warnings.warn(
            "The use of `external_ids` argument has changed. It is now used to identify which"
            " properties of which assets to update. Please use"
            " `kili.change_asset_external_ids()` method instead to change asset external IDs.",
            DeprecationWarning,
        )
        raise MissingArgumentError("Please provide either `asset_ids` or `external_ids`.")
    asset_ids = get_asset_ids_or_throw_error(self, asset_ids, external_ids, project_id)
    saved_args = locals()
    parameters = {
        k: v
        for (k, v) in saved_args.items()
        if k
        in [
            "asset_ids",
            "priorities",
            "json_metadatas",
            "consensus_marks",
            "honeypot_marks",
            "to_be_labeled_by_array",
            "contents",
            "json_contents",
            "status_array",
            "is_used_for_consensus_array",
            "is_honeypot_array",
        ]
    }
    properties_to_batch = process_update_properties_in_assets_parameters(parameters)
    def generate_variables(batch: Dict) -> Dict:
        data = {
            "priority": batch["priorities"],
            "jsonMetadata": batch["json_metadatas"],
            "consensusMark": batch["consensus_marks"],
            "honeypotMark": batch["honeypot_marks"],
            "toBeLabeledBy": batch["to_be_labeled_by_array"],
            "shouldResetToBeLabeledBy": batch["should_reset_to_be_labeled_by_array"],
            "content": batch["contents"],
            "jsonContent": batch["json_contents"],
            "status": batch["status_array"],
            "isUsedForConsensus": batch["is_used_for_consensus_array"],
            "isHoneypot": batch["is_honeypot_array"],
        }
        data_array = [dict(zip(data, t)) for t in zip(*data.values())]
        return {
            "whereArray": [{"id": asset_id} for asset_id in batch["asset_ids"]],
            "dataArray": data_array,
        }
    results = _mutate_from_paginated_call(
        self,
        properties_to_batch,
        generate_variables,
        GQL_UPDATE_PROPERTIES_IN_ASSETS,
    )
    formated_results = [format_result("data", result, Asset) for result in results]
    return [item for batch_list in formated_results for item in batch_list]